Search results
Results From The WOW.Com Content Network
In heat transfer, the thermal conductivity of a substance, k, is an intensive property that indicates its ability to conduct heat. For most materials, the amount of heat conducted varies (usually non-linearly) with temperature. [1] Thermal conductivity is often measured with laser flash analysis. Alternative measurements are also established.
Thermal contact resistance is significant and may dominate for good heat conductors such as metals but can be neglected for poor heat conductors such as insulators. [2] Thermal contact conductance is an important factor in a variety of applications, largely because many physical systems contain a mechanical combination of two materials.
An example of a new source of heat "turning on" within an object, causing transient conduction, is an engine starting in an automobile. In this case, the transient thermal conduction phase for the entire machine is over, and the steady-state phase appears, as soon as the engine reaches steady-state operating temperature .
The thermal conductivity of a material is a measure of its ability to conduct heat.It is commonly denoted by , , or and is measured in W·m −1 ·K −1.. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal conductivity.
This is because a material that is considered an insulator in electrical terms is about 20 orders of magnitude less conductive than a material that is considered a conductor, while, in thermal terms, the difference between an "insulator" and a "conductor" is only about three orders of magnitude.
Re-entry through the atmosphere generates very high temperatures due to compression of the air at high speeds. Insulators must meet demanding physical properties beyond their thermal transfer retardant properties. Examples of insulation used on spacecraft include reinforced carbon-carbon composite nose cone and silica fiber tiles of the Space ...
Bulk insulators block conductive heat transfer and convective flow either into or out of a building. Air is a very poor conductor of heat and therefore makes a good insulator. Insulation to resist conductive heat transfer uses air spaces between fibers, inside foam or plastic bubbles and in building cavities like the attic.
The process of heat transfer from one place to another place without the movement of particles is called conduction, such as when placing a hand on a cold glass of water—heat is conducted from the warm skin to the cold glass, but if the hand is held a few inches from the glass, little conduction would occur since air is a poor conductor of heat.