Search results
Results From The WOW.Com Content Network
The impact of valence theory declined during the 1960s and 1970s as molecular orbital theory grew in usefulness as it was implemented in large digital computer programs. Since the 1980s, the more difficult problems, of implementing valence bond theory into computer programs, have been solved largely, and valence bond theory has seen a ...
In chemistry, orbital hybridisation (or hybridization) is the concept of mixing atomic orbitals to form new hybrid orbitals (with different energies, shapes, etc., than the component atomic orbitals) suitable for the pairing of electrons to form chemical bonds in valence bond theory.
The assumption that a covalent bond is a linear combination of atomic orbitals of just the two bonding atoms is an approximation (see molecular orbital theory), but valence bond theory is accurate enough that it has had and continues to have a major impact on how bonding is understood. [1]
Initially, Linus Pauling's scheme of water as presented in his hallmark paper on valence bond theory consists of two inequivalent lone pairs of σ and π symmetry. [5] As a result of later developments resulting partially from the introduction of VSEPR, an alternative view arose which considers the two lone pairs to be equivalent, colloquially ...
This trend can be rationalized with hybridization [3] – moving down a group, the gap between the ns and np orbitals widens and there is an increasing mismatch between valence orbital sizes. The mismatch leads to lower hybridization – that is, increased nonbonding character on each of the heavier group 13 or 14 atoms involved in multiple ...
Valence bond theory suggests that H 2 O is sp 3 hybridized in which the 2s atomic orbital and the three 2p orbitals of oxygen are hybridized to form four new hybridized orbitals which then participate in bonding by overlapping with the hydrogen 1s orbitals. As such, the predicted shape and bond angle of sp 3 hybridization is tetrahedral and 109 ...
When one electron is removed from an sp 3 orbital, resonance is invoked between four valence bond structures, each of which has a single one-electron bond and three two-electron bonds. Triply degenerate T 2 and A 1 ionized states (CH 4 + ) are produced from different linear combinations of these four structures.
Modern valence bond theory is the application of valence bond theory (VBT) with computer programs that are competitive in accuracy and economy, with programs for the Hartree–Fock or post-Hartree-Fock methods. The latter methods dominated quantum chemistry from the advent of digital computers because they were easier to program. The early ...