When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    The set M(n, R) (also denoted M n (R) [7]) of all square n-by-n matrices over R is a ring called matrix ring, isomorphic to the endomorphism ring of the left R-module R n. [58] If the ring R is commutative, that is, its multiplication is commutative, then the ring M(n, R) is also an associative algebra over R.

  3. NumPy - Wikipedia

    en.wikipedia.org/wiki/NumPy

    NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]

  4. Outer product - Wikipedia

    en.wikipedia.org/wiki/Outer_product

    In linear algebra, the outer product of two coordinate vectors is the matrix whose entries are all products of an element in the first vector with an element in the second vector. If the two coordinate vectors have dimensions n and m, then their outer product is an n × m matrix.

  5. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    For a symmetric matrix A, the vector vec(A) contains more information than is strictly necessary, since the matrix is completely determined by the symmetry together with the lower triangular portion, that is, the n(n + 1)/2 entries on and below the main diagonal.

  6. Square matrix - Wikipedia

    en.wikipedia.org/wiki/Square_matrix

    In mathematics, a square matrix is a matrix with the same number of rows and columns. An n-by-n matrix is known as a square matrix of order . Any two square matrices of the same order can be added and multiplied. Square matrices are often used to represent simple linear transformations, such as shearing or rotation.

  7. Row and column vectors - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_vectors

    In linear algebra, a column vector with ⁠ ⁠ elements is an matrix [1] consisting of a single column of ⁠ ⁠ entries, for example, = [].. Similarly, a row vector is a matrix for some ⁠ ⁠, consisting of a single row of ⁠ ⁠ entries, = […]. (Throughout this article, boldface is used for both row and column vectors.)

  8. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    The n × n matrices that have an inverse form a group under matrix multiplication, the subgroups of which are called matrix groups. Many classical groups (including all finite groups ) are isomorphic to matrix groups; this is the starting point of the theory of group representations .

  9. Permutation matrix - Wikipedia

    en.wikipedia.org/wiki/Permutation_matrix

    Multiplying a matrix M by either or on either the left or the right will permute either the rows or columns of M by either π or π −1.The details are a bit tricky. To begin with, when we permute the entries of a vector (, …,) by some permutation π, we move the entry of the input vector into the () slot of the output vector.