Search results
Results From The WOW.Com Content Network
The fold-and-cut problem asks what shapes can be obtained by folding a piece of paper flat, and making a single straight complete cut. The solution, known as the fold-and-cut theorem, states that any shape with straight sides can be obtained. A practical problem is how to fold a map so that it may be manipulated with minimal effort or movements.
The corresponding problem that the theorem solves is known as the fold-and-cut problem, which asks what shapes can be obtained by the so-called fold-and-cut method. A particular instance of the problem, which asks how a particular shape can be obtained by the fold-and-cut method, is known as a fold-and-cut problem.
Origamics: Mathematical Explorations Through Paper Folding is a book on the mathematics of paper folding by Kazuo Haga [], a Japanese retired biology professor.It was edited and translated into English by Josefina C. Fonacier and Masami Isoda, based on material published in several Japanese-language books by Haga, and published in 2008 by World Scientific. [1]
The Huzita–Justin axioms or Huzita–Hatori axioms are a set of rules related to the mathematical principles of origami, describing the operations that can be made when folding a piece of paper. The axioms assume that the operations are completed on a plane (i.e. a perfect piece of paper), and that all folds are linear.
It includes the NP-completeness of testing flat foldability, [2] the problem of map folding (determining whether a pattern of mountain and valley folds forming a square grid can be folded flat), [2] [4] the work of Robert J. Lang using tree structures and circle packing to automate the design of origami folding patterns, [2] [4] the fold-and ...
The napkin folding problem is a problem in geometry and the mathematics of paper folding that explores whether folding a square or a rectangular napkin can increase its perimeter. The problem is known under several names, including the Margulis napkin problem , suggesting it is due to Grigory Margulis , and the Arnold's rouble problem referring ...
Geometric Origami is a book on the mathematics of paper folding, focusing on the ability to simulate and extend classical straightedge and compass constructions using origami. It was written by Austrian mathematician Robert Geretschläger [ de ] and published by Arbelos Publishing (Shipley, UK) in 2008.
For some (multi-vertex) folding patterns, it is necessary to curve or bend the paper while transforming it from a flat sheet to its flat-folded state, rather than keeping the rest of the paper flat and only changing the dihedral angles at each fold. For rigid origami (a type of folding that keeps the surface flat except at its folds, suitable ...