Search results
Results From The WOW.Com Content Network
The Kaplan–Meier estimator, [1] [2] also known as the product limit estimator, is a non-parametric statistic used to estimate the survival function from lifetime data. In medical research, it is often used to measure the fraction of patients living for a certain amount of time after treatment.
Kaplan–Meier graph by treatment group in aml. The null hypothesis for a log-rank test is that the groups have the same survival. The expected number of subjects surviving at each time point in each is adjusted for the number of subjects at risk in the groups at each event time.
The problem with measuring overall survival by using the Kaplan-Meier or actuarial survival methods is that the estimates include two causes of death: deaths from the disease of interest and deaths from all other causes, which includes old age, other cancers, trauma and any other possible cause of death. In general, survival analysis is ...
Paul Meier (July 24, 1924 – August 7, 2011) [1] was a statistician who promoted the use of randomized trials in medicine. [2] [3]Meier is known for introducing, with Edward L. Kaplan, the Kaplan–Meier estimator, [4] [5] a method for measuring how many patients survive a medical treatment from one duration to another, taking into account that the sampled population changes over time.
Kaplan-Meier curve illustrating overall survival based on volume of brain metastases.Elaimy et al. (2011) [6] In its simplest form, the hazard ratio can be interpreted as the chance of an event occurring in the treatment arm divided by the chance of the event occurring in the control arm, or vice versa, of a study.
I beleive that an example calculation is necessary for a comprehensive description of the Kaplan-Meier estimate. However, I agree that the section is long, and it need not be in the middle of the article; it can be moved to the end for those readers who wish to see the example calculation.
The Nelson–Aalen estimator is a non-parametric estimator of the cumulative hazard rate function in case of censored data or incomplete data. [1] It is used in survival theory, reliability engineering and life insurance to estimate the cumulative number of expected events.
One of the earliest attempts to analyse a statistical problem involving censored data was Daniel Bernoulli's 1766 analysis of smallpox morbidity and mortality data to demonstrate the efficacy of vaccination. [2] An early paper to use the Kaplan–Meier estimator for estimating censored costs was Quesenberry et al. (1989), [3] however this ...