When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Wavenumber - Wikipedia

    en.wikipedia.org/wiki/Wavenumber

    In the physical sciences, the wavenumber (or wave number), also known as repetency, [1] is the spatial frequency of a wave. Ordinary wavenumber is defined as the number of wave cycles divided by length; it is a physical quantity with dimension of reciprocal length , expressed in SI units of cycles per metre or reciprocal metre (m -1 ).

  3. List of dimensionless quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_dimensionless...

    Bodenstein number: Bo or Bd = / = Max Bodenstein: chemistry (residence-time distribution; similar to the axial mass transfer Peclet number) [2] Damköhler numbers: Da = Gerhard Damköhler: chemistry (reaction time scales vs. residence time)

  4. Iribarren number - Wikipedia

    en.wikipedia.org/wiki/Iribarren_number

    The parameter used to describe breaking wave types on beaches; or wave run-up on – and reflection by – beaches, breakwaters and dikes. [4] [5] [6] Iribarren Number (ξ 0) as a function of wave height with constant beach steepness of 7.5 degrees. Iribarren's work was further developed by Jurjen Battjes in 1974, who named the parameter after ...

  5. Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_equation

    When the equation is applied to waves, k is known as the wave number. The Helmholtz equation has a variety of applications in physics and other sciences, including the wave equation, the diffusion equation, and the Schrödinger equation for a free particle. In optics, the Helmholtz equation is the wave equation for the electric field. [1]

  6. Wave - Wikipedia

    en.wikipedia.org/wiki/Wave

    One may even restrict to a point of the Cartesian line – that is, the set of real numbers. This is the case, for example, when studying vibrations in a violin string or recorder. The time , on the other hand, is always assumed to be a scalar; that is, a real number.

  7. Dispersion relation - Wikipedia

    en.wikipedia.org/wiki/Dispersion_relation

    Dispersion occurs when sinusoidal waves of different wavelengths have different propagation velocities, so that a wave packet of mixed wavelengths tends to spread out in space. The speed of a plane wave, , is a function of the wave's wavelength : = ().

  8. Frequency - Wikipedia

    en.wikipedia.org/wiki/Frequency

    Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio signals , radio waves, and light. For example, if a heart beats at a frequency of 120 times per minute (2 hertz), the period—the time interval between beats—is half a second (60 ...

  9. Longitudinal wave - Wikipedia

    en.wikipedia.org/wiki/Longitudinal_wave

    A wave along the length of a stretched Slinky toy, where the distance between coils increases and decreases, is a good visualization. Real-world examples include sound waves (vibrations in pressure, a particle of displacement, and particle velocity propagated in an elastic medium) and seismic P waves (created by earthquakes and explosions).