Search results
Results From The WOW.Com Content Network
In the theory of quadratic forms, the parabola is the graph of the quadratic form x 2 (or other scalings), while the elliptic paraboloid is the graph of the positive-definite quadratic form x 2 + y 2 (or scalings), and the hyperbolic paraboloid is the graph of the indefinite quadratic form x 2 − y 2. Generalizations to more variables yield ...
In mathematics, a parametric equation expresses several quantities, such as the coordinates of a point, as functions of one or several variables called parameters. [ 1 ] In the case of a single parameter, parametric equations are commonly used to express the trajectory of a moving point, in which case, the parameter is often, but not ...
In geometry, curve sketching (or curve tracing) are techniques for producing a rough idea of overall shape of a plane curve given its equation, without computing the large numbers of points required for a detailed plot. It is an application of the theory of curves to find their main features.
Equivalence of a quadratic Bézier curve and a parabolic segment. A quadratic Bézier curve is also a segment of a parabola. As a parabola is a conic section, some sources refer to quadratic Béziers as "conic arcs". [12] With reference to the figure on the right, the important features of the parabola can be derived as follows: [13]
The discriminant B 2 – 4AC of the conic section's quadratic equation (or equivalently the determinant AC – B 2 /4 of the 2 × 2 matrix) and the quantity A + C (the trace of the 2 × 2 matrix) are invariant under arbitrary rotations and translations of the coordinate axes, [14] [15] [16] as is the determinant of the 3 × 3 matrix above.
In this position, the hyperbolic paraboloid opens downward along the x-axis and upward along the y-axis (that is, the parabola in the plane x = 0 opens upward and the parabola in the plane y = 0 opens downward). Any paraboloid (elliptic or hyperbolic) is a translation surface, as it can be generated by a moving parabola directed by a second ...
This page was last edited on 2 December 2024, at 16:34 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
The modern quadratic formula is sometimes called Sridharacharya's formula in India and Bhaskara's formula in Brazil. [33] The 9th-century Persian mathematician Muḥammad ibn Mūsā al-Khwārizmī solved quadratic equations algebraically. [34] The quadratic formula covering all cases was first obtained by Simon Stevin in 1594. [35]