Ads
related to: solving simple rational equations worksheet
Search results
Results From The WOW.Com Content Network
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.
An example of using Newton–Raphson method to solve numerically the equation f(x) = 0. In mathematics, to solve an equation is to find its solutions, which are the values (numbers, functions, sets, etc.) that fulfill the condition stated by the equation, consisting generally of two expressions related by an equals sign.
The first problem was to know how well a real number can be approximated by rational numbers. For this problem, a rational number p/q is a "good" approximation of a real number α if the absolute value of the difference between p/q and α may not decrease if p/q is replaced by another
This is useful in solving such recurrences, since by using partial fraction decomposition we can write any proper rational function as a sum of factors of the form 1 / (ax + b) and expand these as geometric series, giving an explicit formula for the Taylor coefficients; this is the method of generating functions.
The following is a list of integrals (antiderivative functions) of rational functions. Any rational function can be integrated by partial fraction decomposition of the function into a sum of functions of the form:
In mathematics, a quadratic equation is a polynomial equation of the second degree. The general form is + + =, where a ≠ 0. The quadratic equation on a number can be solved using the well-known quadratic formula, which can be derived by completing the square.