Search results
Results From The WOW.Com Content Network
The polarizability of an atom or molecule is defined as the ratio of its induced dipole moment to the local electric field; in a crystalline solid, one considers the dipole moment per unit cell. [1] Note that the local electric field seen by a molecule is generally different from the macroscopic electric field that would be measured externally.
A dipole is characterised by its dipole moment, a vector quantity shown in the figure as the blue arrow labeled M. It is the relationship between the electric field and the dipole moment that gives rise to the behaviour of the dielectric. (Note that the dipole moment points in the same direction as the electric field in the figure.
In a nonlinear optical medium, the polarization density is written as a series expansion in powers of the applied electric field, and the coefficients are termed the non-linear susceptibility: P ( t ) = ε 0 ( χ ( 1 ) E ( t ) + χ ( 2 ) E 2 ( t ) + χ ( 3 ) E 3 ( t ) + …
The dipole moment per unit volume is defined as the dielectric polarization. If this dipole moment changes with the effect of applied temperature changes, applied electric field, or applied pressure, the material is pyroelectric, ferroelectric, or piezoelectric, respectively.
Electric polarization of a given dielectric material sample is defined as the quotient of electric dipole moment (a vector quantity, expressed as coulombs*meters (C*m) in SI units) to volume (meters cubed). [1] [2] Polarization density is denoted mathematically by P; [2] in SI units, it is expressed in coulombs per square meter (C/m 2).
The electric dipole moment is a measure of the separation of positive and negative electrical charges within a system: that is, a measure of the system's overall polarity. The SI unit for electric dipole moment is the coulomb-metre (C⋅m). The debye (D) is another unit of measurement used in atomic physics and chemistry.
The effect of this equation can be seen in the case of an object with a "frozen in" polarization like a bar electret, the electric analogue to a bar magnet. There is no free charge in such a material, but the inherent polarization gives rise to an electric field, demonstrating that the D field is not determined entirely by the free charge.
The size of the induced dipole moment is equal to the product of the strength of the external field and the dipole polarizability of ρ. Dipole moment values can be obtained from measurement of the dielectric constant. Some typical gas phase values given with the unit debye are: [7] carbon dioxide: 0; carbon monoxide: 0.112 D; ozone: 0.53 D