When.com Web Search

  1. Ads

    related to: operations on relations definition biology examples math questions worksheet

Search results

  1. Results From The WOW.Com Content Network
  2. Relation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Relation_(mathematics)

    A function that is injective. For example, the green relation in the diagram is an injection, but the red, blue and black ones are not. A surjection [d] A function that is surjective. For example, the green relation in the diagram is a surjection, but the red, blue and black ones are not. A bijection [d] A function that is injective and surjective.

  3. Composition of relations - Wikipedia

    en.wikipedia.org/wiki/Composition_of_relations

    Another form of composition of relations, which applies to general -place relations for , is the join operation of relational algebra. The usual composition of two binary relations as defined here can be obtained by taking their join, leading to a ternary relation, followed by a projection that removes the middle component.

  4. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.

  5. Relation algebra - Wikipedia

    en.wikipedia.org/wiki/Relation_algebra

    In mathematics and abstract algebra, a relation algebra is a residuated Boolean algebra expanded with an involution called converse, a unary operation.The motivating example of a relation algebra is the algebra 2 X 2 of all binary relations on a set X, that is, subsets of the cartesian square X 2, with R•S interpreted as the usual composition of binary relations R and S, and with the ...

  6. Algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_sets

    It is the algebra of the set-theoretic operations of union, intersection and complementation, and the relations of equality and inclusion. For a basic introduction to sets see the article on sets, for a fuller account see naive set theory, and for a full rigorous axiomatic treatment see axiomatic set theory.

  7. Intransitivity - Wikipedia

    en.wikipedia.org/wiki/Intransitivity

    This relation is intransitive since, for example, 2 R 6 (2 is a divisor of 6) and 6 R 3 (6 is a multiple of 3), but 2 is neither a multiple nor a divisor of 3. This does not imply that the relation is antitransitive (see below); for example, 2 R 6, 6 R 12, and 2 R 12 as well. An example in biology comes from the food chain.

  8. Congruence relation - Wikipedia

    en.wikipedia.org/wiki/Congruence_relation

    In the particular case of groups, congruence relations can be described in elementary terms as follows: If G is a group (with identity element e and operation *) and ~ is a binary relation on G, then ~ is a congruence whenever: Given any element a of G, a ~ a (reflexivity); Given any elements a and b of G, if a ~ b, then b ~ a ;

  9. Structure (mathematical logic) - Wikipedia

    en.wikipedia.org/wiki/Structure_(mathematical_logic)

    In universal algebra and in model theory, a structure consists of a set along with a collection of finitary operations and relations that are defined on it.. Universal algebra studies structures that generalize the algebraic structures such as groups, rings, fields and vector spaces.