Ads
related to: 20 hard math problems
Search results
Results From The WOW.Com Content Network
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Euler diagram for P, NP, NP-complete, and NP-hard set of problems (excluding the empty language and its complement, which belong to P but are not NP-complete) Main article: P versus NP problem The question is whether or not, for all problems for which an algorithm can verify a given solution quickly (that is, in polynomial time ), an algorithm ...
10 Hard Math Problems That Remain Unsolved Getty/Creative Commons. ... Several computer algorithms for this have been written in the last 20 years, and some of them even animate the process.
Of the cleanly formulated Hilbert problems, numbers 3, 7, 10, 14, 17, 18, 19, and 20 have resolutions that are accepted by consensus of the mathematical community. Problems 1, 2, 5, 6, [ g ] 9, 11, 12, 15, 21, and 22 have solutions that have partial acceptance, but there exists some controversy as to whether they resolve the problems.
RELATED: Hard Math Problems That’ll Test Your Smarts. Safe code 1. Math puzzle. ... 20 Printable Sudoku Puzzles to Test Your Smarts. Riddle above egg illustration with a question mark.
The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23
The post 20 Challenging Lateral Thinking Puzzles That Are Harder Than They Seem appeared first on Reader's Digest. ... Hard Math Problems That’ll Test Your Smarts. 6. A woman opened a door ...
Closer to the Collatz problem is the following universally quantified problem: Given g, does the sequence of iterates g k (n) reach 1, for all n > 0? Modifying the condition in this way can make a problem either harder or easier to solve (intuitively, it is harder to justify a positive answer but might be easier to justify a negative one).