Search results
Results From The WOW.Com Content Network
The free will theorem of John H. Conway and Simon B. Kochen states that if we have a free will in the sense that our choices are not a function of the past, then, subject to certain assumptions, so must some elementary particles. Conway and Kochen's paper was published in Foundations of Physics in 2006. [1]
Stone's theorem on one-parameter unitary groups (functional analysis) Stone–Tukey theorem ; Stone–von Neumann theorem (functional analysis, representation theory of the Heisenberg group, quantum mechanics) Stone–Weierstrass theorem (functional analysis) Strassmann's theorem (field theory) Strong perfect graph theorem (graph theory)
An abelian group with Ext 1 (A, Z) = 0 is called a Whitehead group; MA + ¬CH proves the existence of a non-free Whitehead group, while V = L proves that all Whitehead groups are free. In one of the earliest applications of proper forcing, Shelah constructed a model of ZFC + CH in which there is a non-free Whitehead group. [12] [13]
Nevertheless, admissibility of rules is known to be decidable in many modal and superintuitionistic logics. The first decision procedures for admissible rules in basic transitive modal logics were constructed by Rybakov, using the reduced form of rules. [12] A modal rule in variables p 0, ... , p k is called reduced if it has the form
Semantic completeness is the converse of soundness for formal systems. A formal system is complete with respect to tautologousness or "semantically complete" when all its tautologies are theorems, whereas a formal system is "sound" when all theorems are tautologies (that is, they are semantically valid formulas: formulas that are true under every interpretation of the language of the system ...
A graphical representation of a partially built propositional tableau. In proof theory, the semantic tableau [1] (/ t æ ˈ b l oʊ, ˈ t æ b l oʊ /; plural: tableaux), also called an analytic tableau, [2] truth tree, [1] or simply tree, [2] is a decision procedure for sentential and related logics, and a proof procedure for formulae of first-order logic. [1]
In proof theory and mathematical logic, sequent calculus is a family of formal systems sharing a certain style of inference and certain formal properties. The first sequent calculi systems, LK and LJ, were introduced in 1934/1935 by Gerhard Gentzen [1] as a tool for studying natural deduction in first-order logic (in classical and intuitionistic versions, respectively).
Thus, in frequentist decision theory it is sufficient to consider only (generalized) Bayes rules. Conversely, while Bayes rules with respect to proper priors are virtually always admissible, generalized Bayes rules corresponding to improper priors need not yield admissible procedures. Stein's example is one such famous situation.