Search results
Results From The WOW.Com Content Network
Thus, the existence of duplicates does not affect the value of the extreme order statistics. There are other estimation techniques other than min/max sketches. The first paper on count-distinct estimation [7] describes the Flajolet–Martin algorithm, a bit pattern sketch. In this case, the elements are hashed into a bit vector and the sketch ...
The statistical treatment of count data is distinct from that of binary data, in which the observations can take only two values, usually represented by 0 and 1, and from ordinal data, which may also consist of integers but where the individual values fall on an arbitrary scale and only the relative ranking is important. [example needed]
A frequency distribution table is an arrangement of the values that one or more variables take in a sample. Each entry in the table contains the frequency or count of the occurrences of values within a particular group or interval, and in this way, the table summarizes the distribution of values in the sample.
More generally, there are d! possible orders for a given array, one for each permutation of dimensions (with row-major and column-order just 2 special cases), although the lists of stride values are not necessarily permutations of each other, e.g., in the 2-by-3 example above, the strides are (3,1) for row-major and (1,2) for column-major.
Comma-separated values (CSV) is a text file format that uses commas to separate values, and newlines to separate records. A CSV file stores tabular data (numbers and text) in plain text , where each line of the file typically represents one data record .
The reference count of a string is checked before mutating a string. This allows reference count 1 strings to be mutated directly whilst higher reference count strings are copied before mutation. This allows the general behaviour of old style pascal strings to be preserved whilst eliminating the cost of copying the string on every assignment.
In the design of experiments, consecutive sampling, also known as total enumerative sampling, [1] is a sampling technique in which every subject meeting the criteria of inclusion is selected until the required sample size is achieved. [2]
Here input is the input array to be sorted, key returns the numeric key of each item in the input array, count is an auxiliary array used first to store the numbers of items with each key, and then (after the second loop) to store the positions where items with each key should be placed, k is the maximum value of the non-negative key values and ...