When.com Web Search

  1. Ads

    related to: area perimeter circumference worksheet pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Perimeter - Wikipedia

    en.wikipedia.org/wiki/Perimeter

    A perimeter is a closed path that encompasses, surrounds, or outlines either a two dimensional shape or a one-dimensional length. The perimeter of a circle or an ellipse is called its circumference. Calculating the perimeter has several practical applications. A calculated perimeter is the length of fence required to surround a yard or garden.

  3. Roundness - Wikipedia

    en.wikipedia.org/wiki/Roundness

    Roundness = ⁠ Perimeter 2 / 4 π × Area ⁠. This ratio will be 1 for a circle and greater than 1 for non-circular shapes. Another definition is the inverse of that: Roundness = ⁠ 4 π × Area / Perimeter 2 ⁠, which is 1 for a perfect circle and goes down as far as 0 for highly non-circular shapes.

  4. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    A set of sides that can form a cyclic quadrilateral can be arranged in any of three distinct sequences each of which can form a cyclic quadrilateral of the same area in the same circumcircle (the areas being the same according to Brahmagupta's area formula). Any two of these cyclic quadrilaterals have one diagonal length in common. [17]: p. 84

  5. Circumference - Wikipedia

    en.wikipedia.org/wiki/Circumference

    The circumference is the arc length of the circle, as if it were opened up and straightened out to a line segment. [1] More generally, the perimeter is the curve length around any closed figure. Circumference may also refer to the circle itself, that is, the locus corresponding to the edge of a disk.

  6. Area - Wikipedia

    en.wikipedia.org/wiki/Area

    This can be seen from the area formula πr 2 and the circumference formula 2πr. The area of a regular polygon is half its perimeter times the apothem (where the apothem is the distance from the center to the nearest point on any side).

  7. Incircle and excircles - Wikipedia

    en.wikipedia.org/wiki/Incircle_and_excircles

    In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter.