Search results
Results From The WOW.Com Content Network
The generalized Maxwell model also known as the Maxwell–Wiechert model (after James Clerk Maxwell and E Wiechert [1] [2]) is the most general form of the linear model for viscoelasticity. In this model, several Maxwell elements are assembled in parallel. It takes into account that the relaxation does not occur at a single time, but in a set ...
For this case only two components of the shear stress became non-zero: = ˙ and = ˙ where ˙ is the shear rate.. Thus, the upper-convected Maxwell model predicts for the simple shear that shear stress to be proportional to the shear rate and the first difference of normal stresses is proportional to the square of the shear rate, the second difference of normal stresses is always zero.
Nonlinear viscoelasticity is when the function is not separable. It usually happens when the deformations are large or if the material changes its properties under deformations. Nonlinear viscoelasticity also elucidates observed phenomena such as normal stresses, shear thinning, and extensional thickening in viscoelastic fluids.
The equation can be applied either to the shear stress or to the uniform tension in a material. In the former case, the viscosity corresponds to that for a Newtonian fluid . In the latter case, it has a slightly different meaning relating stress and rate of strain.
The shape of the time-dependent strain curve is true to the type of equation that characterizes the behavior of the model over time, depending upon how the model is loaded. Although this model can be used to accurately predict the general shape of the strain curve, as well as behavior for long time and instantaneous loads, the model lacks the ...
A Kelvin–Voigt material, also called a Voigt material, is the most simple model viscoelastic material showing typical rubbery properties. It is purely elastic on long timescales (slow deformation), but shows additional resistance to fast deformation.
Viscoelasticity is studied using dynamic mechanical analysis where an oscillatory force (stress) is applied to a material and the resulting displacement (strain) is measured. [ 2 ] In purely elastic materials the stress and strain occur in phase , so that the response of one occurs simultaneously with the other.
At low shear rate (˙ /) a Carreau fluid behaves as a Newtonian fluid with viscosity .At intermediate shear rates (˙ /), a Carreau fluid behaves as a Power-law fluid.At high shear rate, which depends on the power index and the infinite shear-rate viscosity , a Carreau fluid behaves as a Newtonian fluid again with viscosity .