Search results
Results From The WOW.Com Content Network
The tables below list all of the divisors of the numbers 1 to 1000. A divisor of an integer n is an integer m , for which n / m is again an integer (which is necessarily also a divisor of n ). For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21).
A perfect power has a common divisor m > 1 for all multiplicities (it is of the form a m for some a > 1 and m > 1). The first: 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100 (sequence A001597 in the OEIS ). 1 is sometimes included.
A Gaussian integer is either the zero, one of the four units (±1, ±i), a Gaussian prime or composite.The article is a table of Gaussian Integers x + iy followed either by an explicit factorization or followed by the label (p) if the integer is a Gaussian prime.
8 5 (Take the last digit of the number, and check if it is 0 or 5) 8 5 (If it is 5, take the remaining digits, discarding the last) 8 × 2 = 16 (Multiply the result by 2) 16 + 1 = 17 (Add 1 to the result) 85 ÷ 5 = 17 (The result is the same as the original number divided by 5)
A 24×60 rectangular area can be divided into a grid of 12×12 squares, with two squares along one edge (24/12 = 2) and five squares along the other (60/12 = 5). The greatest common divisor of two numbers a and b is the product of the prime factors shared by the two numbers, where each prime factor can be repeated as many times as it divides ...
The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.
The reverse divisor properties of the first two of these numbers, 1089 and 2178, were mentioned by W. W. Rouse Ball in his Mathematical Recreations. [7] In A Mathematician's Apology , G. H. Hardy criticized Rouse Ball for including this problem, writing:
Such a number is a divisor of (⌈ / ⌉,,). The regular numbers are also called 5-smooth, indicating that their greatest prime factor is at most 5. [2] More generally, a k-smooth number is a number whose greatest prime factor is at most k. [3] The first few regular numbers are [2]