When.com Web Search

  1. Ad

    related to: different angles on parallel lines equal

Search results

  1. Results From The WOW.Com Content Network
  2. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    The Elements contains the proof of an equivalent statement (Book I, Proposition 27): If a straight line falling on two straight lines make the alternate angles equal to one another, the straight lines will be parallel to one another. As De Morgan [23] pointed out, this is logically equivalent to (Book I, Proposition 16).

  3. Transversal (geometry) - Wikipedia

    en.wikipedia.org/wiki/Transversal_(geometry)

    Two lines are parallel if and only if the two angles of any pair of corresponding angles of any transversal are congruent (equal in measure). Proposition 1.28 of Euclid's Elements , a theorem of absolute geometry (hence valid in both hyperbolic and Euclidean Geometry ), proves that if the angles of a pair of corresponding angles of a ...

  4. Parallel (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parallel_(geometry)

    Since these are equivalent properties, any one of them could be taken as the definition of parallel lines in Euclidean space, but the first and third properties involve measurement, and so, are "more complicated" than the second. Thus, the second property is the one usually chosen as the defining property of parallel lines in Euclidean geometry ...

  5. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    (alternate interior angles are equal in measure). (since these are angles that a transversal makes with parallel lines AB and DC). Also, side AB is equal in length to side DC, since opposite sides of a parallelogram are equal in length. Therefore, triangles ABE and CDE are congruent (ASA postulate, two corresponding angles and the included side ...

  6. Line (geometry) - Wikipedia

    en.wikipedia.org/wiki/Line_(geometry)

    For a convex quadrilateral with at most two parallel sides, the Newton line is the line that connects the midpoints of the two diagonals. [7] For a hexagon with vertices lying on a conic we have the Pascal line and, in the special case where the conic is a pair of lines, we have the Pappus line. Parallel lines are lines in the same plane that ...

  7. Arrangement of lines - Wikipedia

    en.wikipedia.org/wiki/Arrangement_of_lines

    The number of vertices is smaller when some lines are parallel, or when some vertices are crossed by more than two lines. [4] An arrangement can be rotated, if necessary, to avoid axis-parallel lines. After this step, each ray that forms an edge of the arrangement extends either upward or downward from its endpoint; it cannot be horizontal.

  8. Playfair's axiom - Wikipedia

    en.wikipedia.org/wiki/Playfair's_axiom

    Given that Playfair's postulate implies that only the perpendicular to the perpendicular is a parallel, the lines of the Euclid construction will have to cut each other in a point. It is also necessary to prove that they will do it in the side where the angles sum to less than two right angles, but this is more difficult. [17]

  9. Midpoint theorem (triangle) - Wikipedia

    en.wikipedia.org/wiki/Midpoint_theorem_(triangle)

    The converse of the theorem is true as well. That is if a line is drawn through the midpoint of triangle side parallel to another triangle side then the line will bisect the third side of the triangle. The triangle formed by the three parallel lines through the three midpoints of sides of a triangle is called its medial triangle.