Search results
Results From The WOW.Com Content Network
This is a list of some binary codes that are (or have been) used to represent text as a sequence of binary digits "0" and "1". Fixed-width binary codes use a set number of bits to represent each character in the text, while in variable-width binary codes, the number of bits may vary from character to character.
The modern binary number system, the basis for binary code, is an invention by Gottfried Leibniz in 1689 and appears in his article Explication de l'Arithmétique Binaire (English: Explanation of the Binary Arithmetic) which uses only the characters 1 and 0, and some remarks on its usefulness. Leibniz's system uses 0 and 1, like the modern ...
The base-2 numeral system is a positional notation with a radix of 2.Each digit is referred to as a bit, or binary digit.Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used by almost all modern computers and computer-based devices, as a preferred system of use, over various other human techniques of communication, because ...
The smallest base greater than binary such that no three-digit narcissistic number exists. 80: Octogesimal: Used as a sub-base in Supyire. 85: Ascii85 encoding. This is the minimum number of characters needed to encode a 32 bit number into 5 printable characters in a process similar to MIME-64 encoding, since 85 5 is only slightly bigger than 2 ...
BCD (binary-coded decimal), also called alphanumeric BCD, alphameric BCD, BCD Interchange Code, [1] or BCDIC, [1] is a family of representations of numerals, uppercase Latin letters, and some special and control characters as six-bit character codes. Unlike later encodings such as ASCII, BCD codes were not standardized. Different computer ...
A numeric character reference refers to a character by its Universal Character Set/Unicode code point, and a character entity reference refers to a character by a predefined name. A numeric character reference uses the format &#nnnn; or &#xhhhh; where nnnn is the code point in decimal form, and hhhh is the code point in hexadecimal form.
Similar binary floating-point formats can be defined for computers. There is a number of such schemes, the most popular has been defined by Institute of Electrical and Electronics Engineers (IEEE). The IEEE 754-2008 standard specification defines a 64 bit floating-point format with: an 11-bit binary exponent, using "excess-1023" format.
In addition, 73 is the largest member in the covering set {,,,} of the smallest proven generalized SierpiĆski number of the form + in nonary (, +), while it is also the largest member of the covering set {,,,} that belongs to the smallest such provable number in decimal (, +) — both in congruencies .