When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Quantum number - Wikipedia

    en.wikipedia.org/wiki/Quantum_number

    In chemistry, this quantum number is very important, since it specifies the shape of an atomic orbital and strongly influences chemical bonds and bond angles. The azimuthal quantum number can also denote the number of angular nodes present in an orbital. For example, for p orbitals, ℓ = 1 and thus the amount of angular nodes in a p orbital is 1.

  3. Azimuthal quantum number - Wikipedia

    en.wikipedia.org/wiki/Azimuthal_quantum_number

    A planar node can be described in an electromagnetic wave as the midpoint between crest and trough, which has zero magnitudes. In an s orbital, no nodes go through the nucleus, therefore the corresponding azimuthal quantum number ℓ takes the value of 0. In a p orbital, one node traverses the nucleus and therefore ℓ has the value of 1.

  4. Node (physics) - Wikipedia

    en.wikipedia.org/wiki/Node_(physics)

    Atomic orbitals are classified according to the number of radial and angular nodes. A radial node for the hydrogen atom is a sphere that occurs where the wavefunction for an atomic orbital is equal to zero, while the angular node is a flat plane. [4] Molecular orbitals are classified according to bonding character. Molecular orbitals with an ...

  5. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    See illustration of a cross-section of these nested shells, at right. The s orbitals for all n numbers are the only orbitals with an anti-node (a region of high wave function density) at the center of the nucleus. All other orbitals (p, d, f, etc.) have angular momentum, and thus avoid the nucleus (having a wave node at the nucleus).

  6. List of equations in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    One particle: N particles: One dimension ^ = ^ + = + ^ = = ^ + (,,) = = + (,,) where the position of particle n is x n. = + = = +. (,) = /.There is a further restriction — the solution must not grow at infinity, so that it has either a finite L 2-norm (if it is a bound state) or a slowly diverging norm (if it is part of a continuum): [1] ‖ ‖ = | |.

  7. Magnetic quantum number - Wikipedia

    en.wikipedia.org/wiki/Magnetic_quantum_number

    , the magnitude of the angular momentum in the -direction, is given by the formula: [7] L z = m l ℏ {\displaystyle L_{z}=m_{l}\hbar } . This is a component of the atomic electron's total orbital angular momentum L {\displaystyle \mathbf {L} } , whose magnitude is related to the azimuthal quantum number of its subshell ℓ {\displaystyle \ell ...

  8. Principal quantum number - Wikipedia

    en.wikipedia.org/wiki/Principal_quantum_number

    This formula is not correct in quantum mechanics as the angular momentum magnitude is described by the azimuthal quantum number, but the energy levels are accurate and classically they correspond to the sum of potential and kinetic energy of the electron. The principal quantum number n represents the relative overall energy of each orbital. The ...

  9. Quantum harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Quantum_harmonic_oscillator

    In this case, the angular frequency is given by = where = + is the reduced mass and and are the masses of the two atoms. [ 19 ] The Hooke's atom is a simple model of the helium atom using the quantum harmonic oscillator.