When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Non-Mendelian inheritance - Wikipedia

    en.wikipedia.org/wiki/Non-Mendelian_inheritance

    Paternal gametes (sperm for example) do not have cytoplasmic mitochondria [citation needed]. Thus, the phenotype of traits linked to genes found in either chloroplasts or mitochondria are determined exclusively by the maternal parent. In humans, mitochondrial diseases are a class of diseases, many of which affect the muscles and the eye ...

  3. Dominance (genetics) - Wikipedia

    en.wikipedia.org/wiki/Dominance_(genetics)

    Autosomal dominant and autosomal recessive inheritance, the two most common Mendelian inheritance patterns. An autosome is any chromosome other than a sex chromosome.. In genetics, dominance is the phenomenon of one variant of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome.

  4. Test cross - Wikipedia

    en.wikipedia.org/wiki/Test_cross

    Under the law of dominance in genetics, an individual expressing a dominant phenotype could contain either two copies of the dominant allele (homozygous dominant) or one copy of each dominant and recessive allele (heterozygous dominant). [1] By performing a test cross, one can determine whether the individual is heterozygous or homozygous ...

  5. Mendelian traits in humans - Wikipedia

    en.wikipedia.org/wiki/Mendelian_traits_in_humans

    Autosomal dominant A 50/50 chance of inheritance. Sickle-cell disease is inherited in the autosomal recessive pattern. When both parents have sickle-cell trait (carrier), a child has a 25% chance of sickle-cell disease (red icon), 25% do not carry any sickle-cell alleles (blue icon), and 50% have the heterozygous (carrier) condition. [1]

  6. Dihybrid cross - Wikipedia

    en.wikipedia.org/wiki/Dihybrid_cross

    In the example pictured to the right, RRYY/rryy parents result in F 1 offspring that are heterozygous for both R and Y (RrYy). [4] This is a dihybrid cross of two heterozygous parents. The traits observed in this cross are the same traits that Mendel was observing for his experiments. This cross results in the expected phenotypic ratio of 9:3:3:1.

  7. Glossary of genetics and evolutionary biology - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_genetics_and...

    incomplete dominance incomplete speciation incipient species Any population that is in an early stage of speciation. inheritance See heredity. interbreeding intercross A cross in which both the male and female parents are heterozygous at a particular locus. [8] intrinsic postzygotic isolation introgression. Also introgressive hybridization.

  8. Punnett square - Wikipedia

    en.wikipedia.org/wiki/Punnett_square

    The following example illustrates a dihybrid cross between two double-heterozygote pea plants. R represents the dominant allele for shape (round), while r represents the recessive allele (wrinkled). A represents the dominant allele for color (yellow), while a represents the recessive allele (green).

  9. Sex linkage - Wikipedia

    en.wikipedia.org/wiki/Sex_linkage

    There are fewer X-linked dominant conditions than X-linked recessive, because dominance in X-linkage requires the condition to present in females with only a fraction of the reduction in gene expression of autosomal dominance, since roughly half (or as many as 90% in some cases) of a particular parent's X chromosomes are inactivated in females.