Search results
Results From The WOW.Com Content Network
The history of mathematics deals with the origin of discoveries in mathematics and the mathematical methods and notation of the past.Before the modern age and the worldwide spread of knowledge, written examples of new mathematical developments have come to light only in a few locales.
In doing so, he united two disparate branches of mathematics and introduced a new field of study, analytic number theory. In breaking ground for this new field, Euler created the theory of hypergeometric series, q-series, hyperbolic trigonometric functions, and the analytic theory of continued fractions.
Gottfried Wilhelm Leibniz (or Leibnitz; [a] 1 July 1646 [O.S. 21 June] – 14 November 1716) was a German polymath active as a mathematician, philosopher, scientist and diplomat who is credited, alongside Sir Isaac Newton, with the creation of calculus in addition to many other branches of mathematics, such as binary arithmetic and statistics.
This is a timeline of pure and applied mathematics history.It is divided here into three stages, corresponding to stages in the development of mathematical notation: a "rhetorical" stage in which calculations are described purely by words, a "syncopated" stage in which quantities and common algebraic operations are beginning to be represented by symbolic abbreviations, and finally a "symbolic ...
[8] [9] Islamic mathematics, in turn, developed and expanded the mathematics known to these civilizations. [10] Contemporaneous with but independent of these traditions were the mathematics developed by the Maya civilization of Mexico and Central America, where the concept of zero was given a standard symbol in Maya numerals.
The Greeks created a geometric algebra where terms were represented by sides of geometric objects, [16] usually lines, that had letters associated with them, [17] and with this new form of algebra they were able to find solutions to equations by using a process that they invented, known as "the application of areas". [16] "
Po-Shen Loh is a man on a mission. A professor of mathematics at Carnegie Mellon university, in Pennsylvania, he believes that reimagining the way we teach can help future-proof youngsters in a ...
Évariste Galois had refined a new language for mathematics. Galois believed mathematics should be the study of structure as opposed to number and shape. Galois had discovered new techniques to tell whether certain equations could have solutions or not. The symmetry of certain geometric objects was the key.