Search results
Results From The WOW.Com Content Network
In diesel engines in particular, EGR systems come with serious drawbacks, one of which is a reduction in engine longevity. For example, because the EGR system routes exhaust gas directly back into the cylinder intake without any form of filtration, this exhaust gas contains carbon particulates. And, because these tiny particles are abrasive ...
An exhaust heat recovery system turns waste heat energy in exhaust gases into electric energy for batteries or mechanical energy reintroduced on the crankshaft. The technology is of increasing interest as car and heavy-duty vehicle manufacturers continue to increase efficiency, saving fuel and reducing emissions.
An exhaust system is used to guide reaction exhaust gases away from a controlled combustion inside an engine or stove. The entire system conveys burnt gases from the engine and includes one or more exhaust pipes. Depending on the overall system design, the exhaust gas may flow through one or more of the following: Cylinder head and exhaust manifold
In addition to changing the fuel, US engineers have also come up with two other principles and distinct systems to all on-market products that meet the U.S. 2010 emissions criteria, [citation needed] [needs update] selective non-catalytic reduction (SNCR), and exhaust gas recirculation (EGR). Both are in the exhaust system of diesel engines ...
Exhaust gas recirculation, in internal combustion engines This page was last edited on 6 July 2020, at 03:00 (UTC). Text is available under the Creative Commons ...
The current EPA 2010 version known as ISX15 CM2250 features enhanced exhaust gas recirculation, diesel particulate filter and selective catalytic reduction (SCR), also known as urea injection. SCR consists of a diesel exhaust fluid (DEF - composed of urea and water) injection system: holding tank, pump, controller, and injector and an SCR ...
With proper material selection, an OTSG can be run dry, meaning the hot exhaust gases can pass over the tubes with no water flowing inside the tubes. This eliminates the need for a bypass stack and exhaust gas diverter system which is required to operate a combustion turbine with a drum-type HRSG out of service. [2]
When the exhaust valve opens, the high pressure exhaust gas escapes into the exhaust manifold or header, creating an "exhaust pulse" comprising three main parts: The high-pressure head is created by the large pressure difference between the exhaust in the combustion chamber and the atmospheric pressure outside of the exhaust system