Search results
Results From The WOW.Com Content Network
XOR gate (sometimes EOR, or EXOR and pronounced as Exclusive OR) is a digital logic gate that gives a true (1 or HIGH) output when the number of true inputs is odd. An XOR gate implements an exclusive or from mathematical logic; that is, a true output results if one, and only one, of the inputs to the gate is true.
Truth table 2-1 OAI Input A B C: ... Implementation of an XOR gate using a 2-2-OAI gate. References This page was last edited on 10 April 2024, at 06:56 (UTC). ...
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A truth table has one column for each input variable (for example, A and B), and one final column showing all of the possible results of the logical operation that the table represents (for example, A XOR B). Each row of the truth table contains one possible configuration of the input variables (for instance, A=true, B=false), and the result of ...
This results in increased speed, reduced power, smaller area, and potentially lower fabrication cost. For example, a 2-1 AOI gate can be constructed with 6 transistors in CMOS, compared to 10 transistors using a 2-input NAND gate (4 transistors), an inverter (2 transistors), and a 2-input NOR gate (4 transistors).
The (now obsolete) 74S135 implemented four two-input XOR/XNOR gates or two three-input XNOR gates. Both the TTL 74LS implementation, the 74LS266, as well as the CMOS gates (CD4077, 74HC4077 and 74HC266 and so on) are available from most semiconductor manufacturers such as Texas Instruments or NXP , etc. [ 2 ] They are usually available in both ...
The Fredkin gate (also CSWAP or CS gate), named after Edward Fredkin, is a 3-bit gate that performs a controlled swap. It is universal for classical computation. It has the useful property that the numbers of 0s and 1s are conserved throughout, which in the billiard ball model means the same number of balls are output as input.
The first input to the XOR gate is the actual input bit; The second input for each XOR gate is the control input D; This produces the same truth table for the bit arriving at the adder as the multiplexer solution does since the XOR gate output will be what the input bit is when D = 0 and the inverted input bit when D = 1.