Search results
Results From The WOW.Com Content Network
A sample of thorium. Thorium-based nuclear power generation is fueled primarily by the nuclear fission of the isotope uranium-233 produced from the fertile element thorium.A thorium fuel cycle can offer several potential advantages over a uranium fuel cycle [Note 1] —including the much greater abundance of thorium found on Earth, superior physical and nuclear fuel properties, and reduced ...
The thorium fuel cycle has several potential advantages over a uranium fuel cycle, including thorium's greater abundance, superior physical and nuclear properties, reduced plutonium and actinide production, [1] and better resistance to nuclear weapons proliferation when used in a traditional light water reactor [1] [2] though not in a molten ...
A two fluid reactor that has thorium in the fuel salt is sometimes called a "one and a half fluid" reactor, or 1.5 fluid reactor. [26] This is a hybrid, with some of the advantages and disadvantages of both 1 fluid and 2 fluid reactors. Like the 1 fluid reactor, it has thorium in the fuel salt, which complicates the fuel processing.
It could use thorium as a fuel, which is more abundant than uranium. [1] The neutrons needed for sustaining the fission process would be provided by a particle accelerator producing neutrons by spallation or photo-neutron production. These neutrons activate the thorium, enabling fission without needing to make the reactor critical.
Thorium is fertile material, and essentially all thorium can be used in a nuclear reactor. Thorium is not fissile in itself, absorbs a neutron to transmute into uranium-233, which can fission to produce energy. Therefore, a thorium based fuel cycle produces very little, easily manageable waste compared to uranium. [20]
Molten-Salt Reactor Experiment Shippingport Atomic Power Station German THTR-300. In 1946, the public first became informed of uranium-233 bred from thorium as "a third available source of nuclear energy and atom bombs" (in addition to uranium-235 and plutonium-239), following a United Nations report and a speech by Glenn T. Seaborg.
TAE’s machine is a linear reactor that is completely non-radioactive because it uses hydrogen and boron: two abundant, naturally-occurring elements that react to produce only helium. ITER, by ...
Much of their work culminated with the Molten-Salt Reactor Experiment (MSRE). MSRE was a 7.4 MW th test reactor simulating the neutronic "kernel" of a type of epithermal thorium molten salt breeder reactor called the liquid fluoride thorium reactor (LFTR). The large (expensive) breeding blanket of thorium salt was omitted in favor of neutron ...