Search results
Results From The WOW.Com Content Network
In mathematics, a set A is a subset of a set B if all elements of A are also elements of B; B is then a superset of A. It is possible for A and B to be equal; if they are unequal, then A is a proper subset of B. The relationship of one set being a subset of another is called inclusion (or sometimes containment).
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula.
proper If, for some notion of substructure, objects are substructures of themselves (that is, the relationship is reflexive), then the qualification proper requires the objects to be different. For example, a proper subset of a set S is a subset of S that is different from S, and a proper divisor of a number n is a divisor of n that is ...
A third pair of operators ⊂ and ⊃ are used differently by different authors: some authors use A ⊂ B and B ⊃ A to mean A is any subset of B (and not necessarily a proper subset), [34] [12] while others reserve A ⊂ B and B ⊃ A for cases where A is a proper subset of B. [33] Examples: The set of all humans is a proper subset of the set ...
A simple example is , the set of natural numbers. From Galileo's paradox , there exists a bijection that maps every natural number n to its square n 2 . Since the set of squares is a proper subset of N {\displaystyle \mathbb {N} } , N {\displaystyle \mathbb {N} } is Dedekind-infinite.
A partition of a set X is a set of non-empty subsets of X such that every element x in X is in exactly one of these subsets [2] (i.e., the subsets are nonempty mutually disjoint sets). Equivalently, a family of sets P is a partition of X if and only if all of the following conditions hold: [3]
A three-dimensional plot of an indicator function, shown over a square two-dimensional domain (set X): the "raised" portion overlays those two-dimensional points which are members of the "indicated" subset (A). In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset ...
If A is a subset of B, then one can also say that B is a superset of A, that A is contained in B, or that B contains A. In symbols, A ⊆ B means that A is a subset of B, and B ⊇ A means that B is a superset of A. Some authors use the symbols ⊂ and ⊃ for subsets, and others use these symbols only for proper subsets. For clarity, one can ...