When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    The key is that when one regards X 1 ⁠ ∂f / ∂u ⁠ + X 2 ⁠ ∂f / ∂v ⁠ as a ℝ 3-valued function, its differentiation along a curve results in second partial derivatives ∂ 2 f; the Christoffel symbols enter with orthogonal projection to the tangent space, due to the formulation of the Christoffel symbols as the tangential ...

  3. Wirtinger derivatives - Wikipedia

    en.wikipedia.org/wiki/Wirtinger_derivatives

    This is evidently an alternative definition of Wirtinger derivative respect to the complex conjugate variable: [10] it is a more general one, since, as noted a by Henrici (1993, p. 294), the limit may exist for functions that are not even differentiable at =. [11] According to Fichera (1969, p. 28), the first to identify the areolar derivative ...

  4. Quartic function - Wikipedia

    en.wikipedia.org/wiki/Quartic_function

    The above solution shows that a quartic polynomial with rational coefficients and a zero coefficient on the cubic term is factorable into quadratics with rational coefficients if and only if either the resolvent cubic has a non-zero root which is the square of a rational, or p 2 − 4r is the square of rational and q = 0; this can readily be ...

  5. Euler–Lagrange equation - Wikipedia

    en.wikipedia.org/wiki/Euler–Lagrange_equation

    In the calculus of variations and classical mechanics, the Euler–Lagrange equations [1] are a system of second-order ordinary differential equations whose solutions are stationary points of the given action functional. The equations were discovered in the 1750s by Swiss mathematician Leonhard Euler and Italian mathematician Joseph-Louis Lagrange.

  6. Covariant derivative - Wikipedia

    en.wikipedia.org/wiki/Covariant_derivative

    The covariant derivative is a generalization of the directional derivative from vector calculus. As with the directional derivative, the covariant derivative is a rule, , which takes as its inputs: (1) a vector, u, defined at a point P, and (2) a vector field v defined in a neighborhood of P. [7]

  7. Partial differential equation - Wikipedia

    en.wikipedia.org/wiki/Partial_differential_equation

    In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives.. The function is often thought of as an "unknown" that solves the equation, similar to how x is thought of as an unknown number solving, e.g., an algebraic equation like x 2 − 3x + 2 = 0.

  8. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g.More precisely, if = is the function such that () = (()) for every x, then the chain rule is, in Lagrange's notation, ′ = ′ (()) ′ (). or, equivalently, ′ = ′ = (′) ′.

  9. Ordinary differential equation - Wikipedia

    en.wikipedia.org/wiki/Ordinary_differential_equation

    In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable.As with any other DE, its unknown(s) consists of one (or more) function(s) and involves the derivatives of those functions. [1]