When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Periodic trends - Wikipedia

    en.wikipedia.org/wiki/Periodic_trends

    The atomic number increases within the same period while moving from left to right, which in turn increases the effective nuclear charge. The increase in attractive forces reduces the atomic radius of elements. When we move down the group, the atomic radius increases due to the addition of a new shell. [5] [6] [7]

  3. Ionization energy - Wikipedia

    en.wikipedia.org/wiki/Ionization_energy

    Ionization energy trends plotted against the atomic number, in units eV.The ionization energy gradually increases from the alkali metals to the noble gases.The maximum ionization energy also decreases from the first to the last row in a given column, due to the increasing distance of the valence electron shell from the nucleus.

  4. Ionization - Wikipedia

    en.wikipedia.org/wiki/Ionization

    An example is presented in the figure to the right. The periodic abrupt decrease in ionization potential after rare gas atoms, for instance, indicates the emergence of a new shell in alkali metals. In addition, the local maximums in the ionization energy plot, moving from left to right in a row, are indicative of s, p, d, and f sub-shells.

  5. Core electron - Wikipedia

    en.wikipedia.org/wiki/Core_electron

    Since the core charge increases as you move across a row of the periodic table, the outer-shell electrons are pulled more and more strongly towards the nucleus and the atomic radius decreases. This can be used to explain a number of periodic trends such as atomic radius, first ionization energy (IE), electronegativity, and oxidizing.

  6. Electrical mobility - Wikipedia

    en.wikipedia.org/wiki/Electrical_mobility

    Electrical mobility is the ability of charged particles (such as electrons or protons) to move through a medium in response to an electric field that is pulling them. The separation of ions according to their mobility in gas phase is called ion mobility spectrometry , in liquid phase it is called electrophoresis .

  7. Atomic radius - Wikipedia

    en.wikipedia.org/wiki/Atomic_radius

    The atomic radius of each element generally decreases across each period due to an increasing number of protons, since an increase in the number of protons increases the attractive force acting on the atom's electrons. The greater attraction draws the electrons closer to the protons, decreasing the size of the atom.

  8. Inductive effect - Wikipedia

    en.wikipedia.org/wiki/Inductive_effect

    In acids, the electron-releasing inductive effect of the alkyl group increases the electron density on oxygen and thus hinders the breaking of the O-H bond, which consequently reduces the ionization. Due to its greater ionization, formic acid ( pK a =3.74 ) is stronger than acetic acid ( pK a =4.76 ).

  9. Ionized impurity scattering - Wikipedia

    en.wikipedia.org/wiki/Ionized_impurity_scattering

    In quantum mechanics, ionized impurity scattering is the scattering of charge carriers by ionization in the lattice. The most primitive models can be conceptually understood as a particle responding to unbalanced local charge that arises near a crystal impurity; similar to an electron encountering an electric field. [1]