When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    The Karatsuba algorithm is a fast multiplication algorithm. It was discovered by Anatoly Karatsuba in 1960 and published in 1962. [ 1 ] [ 2 ] [ 3 ] It is a divide-and-conquer algorithm that reduces the multiplication of two n -digit numbers to three multiplications of n /2-digit numbers and, by repeating this reduction, to at most n log 2 ⁡ 3 ...

  3. Subset sum problem - Wikipedia

    en.wikipedia.org/wiki/Subset_sum_problem

    The complexity of the best known algorithms is exponential in the smaller of the two parameters n and L. The problem is NP-hard even when all input integers are positive (and the target-sum T is a part of the input). This can be proved by a direct reduction from 3SAT. [2] It can also be proved by reduction from 3-dimensional matching (3DM): [3]

  4. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    The Toom–Cook method is one of the generalizations of the Karatsuba method. A three-way Toom–Cook can do a size-3N multiplication for the cost of five size-N multiplications. This accelerates the operation by a factor of 9/5, while the Karatsuba method accelerates it by 4/3.

  5. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    Hindu scholars have been using factorial formulas since at least 1150, when Bhāskara II mentioned factorials in his work Līlāvatī, in connection with a problem of how many ways Vishnu could hold his four characteristic objects (a conch shell, discus, mace, and lotus flower) in his four hands, and a similar problem for a ten-handed god. [4]

  6. Schönhage–Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Schönhage–Strassen...

    This basic algorithm can be improved in several ways. Firstly, it is not necessary to store the digits of a , b {\displaystyle a,b} to arbitrary precision, but rather only up to n ′ + 1 {\displaystyle n'+1} bits, which gives a more efficient machine representation of the arrays A , B {\displaystyle A,B} .

  7. Java performance - Wikipedia

    en.wikipedia.org/wiki/Java_performance

    Results for microbenchmarks between Java and C++ highly depend on which operations are compared. For example, when comparing with Java 5.0: 32- and 64-bit arithmetic operations, [48] [49] file input/output, [50] and exception handling [51] have a similar performance to comparable C++ programs; Operations on arrays [52] have better performance in C.

  8. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    When the variable is a positive integer, the number () is equal to the number of n-permutations from a set of x items, that is, the number of ways of choosing an ordered list of length n consisting of distinct elements drawn from a collection of size .

  9. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    In mathematics, integer factorization is the decomposition of a positive integer into a product of integers. Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a composite number, or it is not, in which case it is a prime number.