Search results
Results From The WOW.Com Content Network
BINOL is a typical example of an axially chiral molecule, while trans-cyclooctene is a commonly cited example of a planar chiral molecule. Finally, helicene possesses helical chirality, which is one type of inherent chirality. Chirality is an important concept for stereochemistry and biochemistry
A chiral molecule is a type of molecule that has a non-superposable mirror image. The feature that is most often the cause of chirality in molecules is the presence of an asymmetric carbon atom. [16] [17] The term "chiral" in general is used to describe the object that is non-superposable on its mirror image. [18]
The structure of the chiral molecule should be represented in the Fischer projection formula. If the hydroxyl group attached to the highest chiral carbon is on the right-hand side it is referred to as D-series and if on the left-hand side it is called L-series. This nomenclature system has also become obsolete.
The term chiral / ˈ k aɪ r əl / describes an object, especially a molecule, which has or produces a non-superposable mirror image of itself. In chemistry , such a molecule is called an enantiomer or is said to exhibit chirality or enantiomerism .
Two types of molecules having axial chirality: allenes (left) and binaryl atropisomers (right) In chemistry, axial chirality is a special case of chirality in which a molecule contains two pairs of chemical groups in a non-planar arrangement about an axis of chirality so that the molecule is not superposable on its mirror image.
Homochirality is a uniformity of chirality, or handedness.Objects are chiral when they cannot be superposed on their mirror images. For example, the left and right hands of a human are approximately mirror images of each other but are not their own mirror images, so they are chiral.
In chemistry, absolute configuration refers to the spatial arrangement of atoms within a molecular entity (or group) that is chiral, and its resultant stereochemical description. [1] Absolute configuration is typically relevant in organic molecules where carbon is bonded to four different substituents.
In nature, one of these forms is usually more common than the other. In our cells, one of these mirror images of a molecule fits "like a glove," while the other may be harmful. [1] [2] In nature, molecules with chirality include hormones, DNA, antibodies, and enzymes. For example, (R)-limonene smells like oranges, while (S)-limonene smells like ...