When.com Web Search

  1. Ads

    related to: prime factorization tree worksheets pdf grade 1 printable math sheets

Search results

  1. Results From The WOW.Com Content Network
  2. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    m is a divisor of n (also called m divides n, or n is divisible by m) if all prime factors of m have at least the same multiplicity in n. The divisors of n are all products of some or all prime factors of n (including the empty product 1 of no prime factors). The number of divisors can be computed by increasing all multiplicities by 1 and then ...

  3. Pocklington primality test - Wikipedia

    en.wikipedia.org/wiki/Pocklington_primality_test

    The Pocklington–Lehmer primality test follows directly from this corollary. To use this corollary, first find enough factors of N − 1 so the product of those factors exceeds . Call this product A. Then let B = (N − 1)/A be the remaining, unfactored portion of N − 1. It does not matter whether B is prime.

  4. Primality certificate - Wikipedia

    en.wikipedia.org/wiki/Primality_certificate

    We continue recursively in this manner until we reach a number known to be prime, such as 2. We end up with a tree of prime numbers, each associated with a witness a. For example, here is a complete Pratt certificate for the number 229: 229 (a = 6, 229 − 1 = 2 2 × 3 × 19), 2 (known prime), 3 (a = 2, 3 − 1 = 2), 2 (known prime),

  5. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    The same prime factor may occur more than once; this example has two copies of the prime factor When a prime occurs multiple times, exponentiation can be used to group together multiple copies of the same prime number: for example, in the second way of writing the product above, 5 2 {\displaystyle 5^{2}} denotes the square or second power of ...

  6. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    This means that, for n up to 2.5 × 10 10, if 2 n −1 (modulo n) equals 1, then n is prime, unless n is one of these 21853 pseudoprimes. Some composite numbers (Carmichael numbers) have the property that a n − 1 is 1 (modulo n) for every a that is coprime to n. The smallest example is n = 561 = 3·11·17, for which a 560 is 1 (modulo 561 ...

  7. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the order of the factors. [3] [4] [5] For example,