Ads
related to: optical distance in optics
Search results
Results From The WOW.Com Content Network
In optics, optical path length (OPL, denoted Λ in equations), also known as optical length or optical distance, is the length that light needs to travel through a vacuum to create the same phase difference as it would have when traveling through a given medium.
Image distance in a spherical mirror + = () Subscripts 1 and 2 refer to initial and final optical media respectively. These ratios are sometimes also used, following simply from other definitions of refractive index, wave phase velocity, and the luminal speed equation:
Real optical systems are complex, and practical difficulties often increase the distance between distinguishable point sources. The resolution of a system is based on the minimum distance at which the points can be distinguished as individuals. Several standards are used to determine, quantitatively, whether or not the points can be distinguished.
A light ray enters a component crossing its input plane at a distance x 1 from the optical axis, traveling in a direction that makes an angle θ 1 with the optical axis. After propagation to the output plane that ray is found at a distance x 2 from the optical axis and at an angle θ 2 with respect to it.
The geometrical optical-path length or simply geometrical path length (GPD) is the length of a segment in a given OP, i.e., the Euclidean distance integrated along a ray between any two points. [1] The mechanical length of an optical device can be reduced to less than the GPD by using folded optics .
Optical centres Occ. Occupation OD oculus dexter (right eye) OH Ocular history OMB Oculo motor balance ONH Optic nerve head Oph Ophthalmoscopy OS oculus sinister (left eye) OU oculus uterque (both eyes) PD Pupillary distance PERRLA Pupils equal, round, reactive to light and accommodation PH Pinhole