When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Low-cycle fatigue - Wikipedia

    en.wikipedia.org/wiki/Low-cycle_fatigue

    ε f ' is an empirical constant known as the fatigue ductility coefficient defined by the strain intercept at 2N =1; c is an empirical constant known as the fatigue ductility exponent, commonly ranging from -0.5 to -0.7. Small c results in long fatigue life. ς f ' is a constant known as the fatigue strength coefficient

  3. Basquin's law - Wikipedia

    en.wikipedia.org/wiki/Basquin's_law

    where is the stress amplitude, ′ is the fatigue strength coefficient, is the number of cycles to failure, ′ is the fatigue ductility coefficient, and is the fatigue strength exponent. Both σ f ′ {\displaystyle \sigma '_{f}} and b {\displaystyle b} are properties of the material.

  4. Goodman relation - Wikipedia

    en.wikipedia.org/wiki/Goodman_relation

    Within the branch of materials science known as material failure theory, the Goodman relation (also called a Goodman diagram, a Goodman-Haigh diagram, a Haigh diagram or a Haigh-Soderberg diagram) is an equation used to quantify the interaction of mean and alternating stresses on the fatigue life of a material. [1]

  5. Physics of failure - Wikipedia

    en.wikipedia.org/wiki/Physics_of_failure

    where ε f is a fatigue ductility coefficient, c is a time and temperature dependent constant, F is an empirical constant, L D is the distance from the neutral point, α is the coefficient of thermal expansion, ΔT is the change in temperature, and h is solder joint thickness. Steinberg: [16] Predicts time to failure of solder joints exposed to ...

  6. Fatigue (material) - Wikipedia

    en.wikipedia.org/wiki/Fatigue_(material)

    Fatigue has traditionally been associated with the failure of metal components which led to the term metal fatigue. In the nineteenth century, the sudden failing of metal railway axles was thought to be caused by the metal crystallising because of the brittle appearance of the fracture surface, but this has since been disproved. [ 1 ]

  7. Larson–Miller relation - Wikipedia

    en.wikipedia.org/wiki/Larson–Miller_relation

    to = cure-fit coefficients for the Yield strength data, the MPC Project Omega creep strain rate parameter, or the Larson Miller Parameter Δ Ω c d {\displaystyle \Delta _{\Omega }^{cd}} = adjustment factor for creep ductility in the Project Omega Model; a range of +0.3 for brittle behavior and -0.3 for ductile behavior can be used

  8. Ductility - Wikipedia

    en.wikipedia.org/wiki/Ductility

    The local necking and the cup and cone fracture surfaces are typical for ductile metals. This tensile test of a nodular cast iron demonstrates low ductility. Ductility refers to the ability of a material to sustain significant plastic deformation before fracture. Plastic deformation is the permanent distortion of a material under applied stress ...

  9. Poisson's ratio - Wikipedia

    en.wikipedia.org/wiki/Poisson's_ratio

    Poisson's ratio of a material defines the ratio of transverse strain (x direction) to the axial strain (y direction)In materials science and solid mechanics, Poisson's ratio (symbol: ν ()) is a measure of the Poisson effect, the deformation (expansion or contraction) of a material in directions perpendicular to the specific direction of loading.