Search results
Results From The WOW.Com Content Network
The multiple valued version of log(z) is a set, but it is easier to write it without braces and using it in formulas follows obvious rules. log(z) is the set of complex numbers v which satisfy e v = z; arg(z) is the set of possible values of the arg function applied to z. When k is any integer:
In mathematics, an elementary function is a function of a single variable (typically real or complex) that is defined as taking sums, products, roots and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and exponential functions, and their inverses (e.g., arcsin, log, or x 1/n).
Exponential function: raises a fixed number to a variable power. Hyperbolic functions: formally similar to the trigonometric functions. Inverse hyperbolic functions: inverses of the hyperbolic functions, analogous to the inverse circular functions. Logarithms: the inverses of exponential functions; useful to solve equations involving exponentials.
10.1 Exponential, logarithm, ... Download as PDF; Printable version; ... It can also be expressed in a component-free manner as ...
This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. Here, is taken to have the value
Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that, for any real number x, one has = + , where e is the base of the natural logarithm, i is the ...
Logarithmic growth is the inverse of exponential growth and is very slow. [2] A familiar example of logarithmic growth is a number, N, in positional notation, which grows as log b (N), where b is the base of the number system used, e.g. 10 for decimal arithmetic. [3] In more advanced mathematics, the partial sums of the harmonic series
Michael Danos and Johann Rafelski edited the Pocketbook of Mathematical Functions, published by Verlag Harri Deutsch in 1984. [14] [15] The book is an abridged version of Abramowitz's and Stegun's Handbook, retaining most of the formulas (except for the first and the two last original chapters, which were dropped), but reducing the numerical tables to a minimum, [14] which, by this time, could ...