When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dodecagon - Wikipedia

    en.wikipedia.org/wiki/Dodecagon

    Three squares of sides R can be cut and rearranged into a dodecagon of circumradius R, yielding a proof without words that its area is 3R 2. A regular dodecagon is a figure with sides of the same length and internal angles of the same size. It has twelve lines of reflective symmetry and rotational symmetry of order 12.

  3. Method of exhaustion - Wikipedia

    en.wikipedia.org/wiki/Method_of_exhaustion

    The area bounded by one spiral rotation and a line is 1/3 that of the circle having a radius equal to the line segment length; Use of the method of exhaustion also led to the successful evaluation of an infinite geometric series (for the first time);

  4. Regular dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_dodecahedron

    If the edge length of a regular dodecahedron is , the radius of a circumscribed sphere (one that touches the regular dodecahedron at all vertices), the radius of an inscribed sphere (tangent to each of the regular dodecahedron's faces), and the midradius (one that touches the middle of each edge) are: [21] =, =, =. Given a regular dodecahedron ...

  5. Rhombic dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedron

    the radius of the sphere passing through the eight order three vertices is exactly equal to the length of the sides: = The surface area A and the volume V of the rhombic dodecahedron with edge length a are: [ 4 ] A = 8 2 a 2 ≈ 11.314 a 2 , V = 16 3 9 a 3 ≈ 3.079 a 3 . {\displaystyle {\begin{aligned}A&=8{\sqrt {2}}a^{2}&\approx 11.314a^{2 ...

  6. Heron's formula - Wikipedia

    en.wikipedia.org/wiki/Heron's_formula

    If ⁠ ⁠ is the radius of the incircle of the triangle, then the triangle can be broken into three triangles of equal altitude ⁠ ⁠ and bases ⁠, ⁠ ⁠, ⁠ and ⁠. ⁠ Their combined area is A = 1 2 a r + 1 2 b r + 1 2 c r = r s , {\displaystyle A={\tfrac {1}{2}}ar+{\tfrac {1}{2}}br+{\tfrac {1}{2}}cr=rs,} where s = 1 2 ( a + b + c ...

  7. List of centroids - Wikipedia

    en.wikipedia.org/wiki/List_of_centroids

    The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object in -dimensional space is the intersection of all hyperplanes that divide into two parts of equal moment about the hyperplane.

  8. Cavalieri's principle - Wikipedia

    en.wikipedia.org/wiki/Cavalieri's_principle

    From the definition of a cycloid, it has width 2πr and height 2r, so its area is four times the area of the circle. Calculate the area within this rectangle that lies above the cycloid arch by bisecting the rectangle at the midpoint where the arch meets the rectangle, rotate one piece by 180° and overlay the other half of the rectangle with it.

  9. Small stellated dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Small_stellated_dodecahedron

    For example, a truncated pentagon {5 ⁄ 1} becomes a decagon {10 ⁄ 1}, so truncating a pentagram {5 ⁄ 2} becomes a doubly-wound pentagon {10 ⁄ 2} (the common factor between 10 and 2 mean we visit each vertex twice to complete the polygon).