Search results
Results From The WOW.Com Content Network
Both the weak topology and the weak* topology are special cases of a more general construction for pairings, which we now describe.The benefit of this more general construction is that any definition or result proved for it applies to both the weak topology and the weak* topology, thereby making redundant the need for many definitions, theorem statements, and proofs.
The definition of weak convergence can be extended to Banach spaces. A sequence of points ( x n ) {\displaystyle (x_{n})} in a Banach space B is said to converge weakly to a point x in B if f ( x n ) → f ( x ) {\displaystyle f(x_{n})\to f(x)} for any bounded linear functional f {\displaystyle f} defined on B {\displaystyle B} , that is, for ...
In mathematics, weak convergence may refer to: Weak convergence of random variables of a probability distribution; Weak convergence of measures, of a sequence of probability measures; Weak convergence (Hilbert space) of a sequence in a Hilbert space more generally, convergence in weak topology in a Banach space or a topological vector space
(Warning: the weak Banach space topology and the weak operator topology and the ultraweak topology are all sometimes called the weak topology, but they are different.) The Mackey topology or Arens-Mackey topology is the strongest locally convex topology on B( H ) such that the dual is B( H ) * , and is also the uniform convergence topology on ...
The predual of B(H) is the trace class operators C 1 (H), and it generates the w*-topology on B(H), called the weak-star operator topology or σ-weak topology. The weak-operator and σ-weak topologies agree on norm-bounded sets in B(H). A net {T α} ⊂ B(H) converges to T in WOT if and only Tr(T α F) converges to Tr(TF) for all finite-rank ...
Tightness is often a necessary criterion for proving the weak convergence of a sequence of probability measures, especially when the measure space has infinite dimension. See Finite-dimensional distribution; Prokhorov's theorem; Lévy–Prokhorov metric; Weak convergence of measures; Tightness in classical Wiener space; Tightness in Skorokhod space
In a topological abelian group, convergence of a series is defined as convergence of the sequence of partial sums. An important concept when considering series is unconditional convergence, which guarantees that the limit of the series is invariant under permutations of the summands.
The following is a list of named topologies or topological spaces, many of which are counterexamples in topology and related branches of mathematics. This is not a list of properties that a topology or topological space might possess; for that, see List of general topology topics and Topological property .