Search results
Results From The WOW.Com Content Network
The large square is divided into a left and right rectangle. A triangle is constructed that has half the area of the left rectangle. Then another triangle is constructed that has half the area of the square on the left-most side. These two triangles are shown to be congruent, proving this square has the same area as the left rectangle. This ...
A square whose side length is a triangular number can be partitioned into squares and half-squares whose areas add to cubes. This shows that the square of the n th triangular number is equal to the sum of the first n cube numbers. Also, the square of the n th triangular number is the same as the sum of the cubes of the integers 1 to n.
This theorem should not be confused with proposition 48 in book 1 of Euclid's Elements, the converse of the Pythagorean theorem, which states that if the square on one side of a triangle is equal to the sum of the squares on the other two sides then the other two sides contain a right angle.
An obtuse triangle has only one inscribed square, with a side coinciding with part of the triangle's longest side. [25] An inscribed square can cover at most half the area of the triangle it is inscribed into. [25] It is exactly half only when the square lies on a side of the triangle whose length equals the height of the
A right triangle with the hypotenuse c. In a right triangle, the hypotenuse is the side that is opposite the right angle, while the other two sides are called the catheti or legs. [7] The length of the hypotenuse can be calculated using the square root function implied by the Pythagorean theorem.
Take the square to be the unit square with vertices at (0, 0), (0, 1), (1, 0) and (1, 1). If there is a dissection into n triangles of equal area, then the area of each triangle is 1/n. Colour each point in the square with one of three colours, depending on the 2-adic valuation of its coordinates.
Technically, it should be called the principal square root of 2, to distinguish it from the negative number with the same property. Geometrically, the square root of 2 is the length of a diagonal across a square with sides of one unit of length; this follows from the Pythagorean theorem. It was probably the first number known to be irrational. [1]
The reverse triangle inequality is an equivalent alternative formulation of the triangle inequality that gives lower bounds instead of upper bounds. For plane geometry, the statement is: [19] Any side of a triangle is greater than or equal to the difference between the other two sides. In the case of a normed vector space, the statement is: