Search results
Results From The WOW.Com Content Network
Integer overflow can be demonstrated through an odometer overflowing, a mechanical version of the phenomenon. All digits are set to the maximum 9 and the next increment of the white digit causes a cascade of carry-over additions setting all digits to 0, but there is no higher digit (1,000,000s digit) to change to a 1, so the counter resets to zero.
Conversely, precision can be lost when converting representations from integer to floating-point, since a floating-point type may be unable to exactly represent all possible values of some integer type. For example, float might be an IEEE 754 single precision type, which cannot represent the integer 16777217 exactly, while a 32-bit integer type ...
With the example in view, a number of details can be discussed. The most important is the choice of the representation of the big number. In this case, only integer values are required for digits, so an array of fixed-width integers is adequate. It is convenient to have successive elements of the array represent higher powers of the base.
In the floating-point case, a variable exponent would represent the power of ten to which the mantissa of the number is multiplied. Languages that support a rational data type usually allow the construction of such a value from two integers, instead of a base-2 floating-point number, due to the loss of exactness the latter would cause.
The standard type hierarchy of Python 3. In computer science and computer programming, a data type (or simply type) is a collection or grouping of data values, usually specified by a set of possible values, a set of allowed operations on these values, and/or a representation of these values as machine types. [1]
Arithmetic underflow can occur when the true result of a floating-point operation is smaller in magnitude (that is, closer to zero) than the smallest value representable as a normal floating-point number in the target datatype. [1] Underflow can in part be regarded as negative overflow of the exponent of the floating-point value. For example ...
The representation has a limited precision. For example, only 15 decimal digits can be represented with a 64-bit real. If a very small floating-point number is added to a large one, the result is just the large one. The small number was too small to even show up in 15 or 16 digits of resolution, and the computer effectively discards it.
Intersection types are useful for describing overloaded function types: for example, if "int → int" is the type of functions taking an integer argument and returning an integer, and "float → float" is the type of functions taking a float argument and returning a float, then the intersection of these two types can be used to describe ...