When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rooted graph - Wikipedia

    en.wikipedia.org/wiki/Rooted_graph

    In mathematics, and, in particular, in graph theory, a rooted graph is a graph in which one vertex has been distinguished as the root. [ 1 ] [ 2 ] Both directed and undirected versions of rooted graphs have been studied, and there are also variant definitions that allow multiple roots.

  3. Rooted product of graphs - Wikipedia

    en.wikipedia.org/wiki/Rooted_product_of_graphs

    The rooted product of graphs. In mathematical graph theory, the rooted product of a graph G and a rooted graph H is defined as follows: take | V(G) | copies of H, and for every vertex v i of G, identify v i with the root node of the i-th copy of H. More formally, assuming that

  4. Tree (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Tree_(graph_theory)

    A path graph (or linear graph) consists of n vertices arranged in a line, so that vertices i and i + 1 are connected by an edge for i = 1, …, n – 1. A starlike tree consists of a central vertex called root and several path graphs attached to it. More formally, a tree is starlike if it has exactly one vertex of degree greater than 2.

  5. Tree (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Tree_(abstract_data_type)

    A rooted tree with the "away from root" direction (a more narrow term is an "arborescence"), meaning: A directed graph, whose underlying undirected graph is a tree (any two vertices are connected by exactly one simple path), [6] with a distinguished root (one vertex is designated as the root),

  6. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.

  7. Arborescence (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Arborescence_(graph_theory)

    In graph theory, an arborescence is a directed graph where there exists a vertex r (called the root) such that, for any other vertex v, there is exactly one directed walk from r to v (noting that the root r is unique). [1] An arborescence is thus the directed-graph form of a rooted tree, understood here as an undirected graph.

  8. Glossary of graph theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_graph_theory

    A graph is d-regular when all of its vertices have degree d. A regular graph is a graph that is d-regular for some d. regular tournament A regular tournament is a tournament where in-degree equals out-degree for all vertices. reverse See transpose. root 1. A designated vertex in a graph, particularly in directed trees and rooted graphs. 2.

  9. Shortest-path tree - Wikipedia

    en.wikipedia.org/wiki/Shortest-path_tree

    The numbers beside the vertices indicate the distance from the root vertex. In mathematics and computer science, a shortest-path tree rooted at a vertex v of a connected, undirected graph G is a spanning tree T of G, such that the path distance from root v to any other vertex u in T is the shortest path distance from v to u in G.