Ad
related to: boolean algebra logic wikipedia
Search results
Results From The WOW.Com Content Network
In mathematics and mathematical logic, Boolean algebra is a branch of algebra.It differs from elementary algebra in two ways. First, the values of the variables are the truth values true and false, usually denoted 1 and 0, whereas in elementary algebra the values of the variables are numbers.
The term "Boolean algebra" honors George Boole (1815–1864), a self-educated English mathematician. He introduced the algebraic system initially in a small pamphlet, The Mathematical Analysis of Logic, published in 1847 in response to an ongoing public controversy between Augustus De Morgan and William Hamilton, and later as a more substantial book, The Laws of Thought, published in 1854.
In mathematics, a Boolean function is a function whose arguments and result assume values from a two-element set (usually {true, false}, {0,1} or {-1,1}). [1] [2] Alternative names are switching function, used especially in older computer science literature, [3] [4] and truth function (or logical function), used in logic.
Boolean algebra is a mathematically rich branch of abstract algebra. Stanford Encyclopaedia of Philosophy defines Boolean algebra as 'the algebra of two-valued logic with only sentential connectives, or equivalently of algebras of sets under union and complementation.' [1] Just as group theory deals with groups, and linear algebra with vector spaces, Boolean algebras are models of the ...
This is a list of topics around Boolean algebra and propositional logic. Articles with a wide scope and introductions. Algebra of sets; Boolean algebra (structure)
The primary algebra (Chapter 6 of LoF), whose models include the two-element Boolean algebra (hereinafter abbreviated 2), Boolean logic, and the classical propositional calculus; Equations of the second degree (Chapter 11), whose interpretations include finite automata and Alonzo Church 's Restricted Recursive Arithmetic (RRA).
In a four-element Boolean algebra whose domain is the powerset of {,} , this formula corresponds to the statement (x = ∅) ∨ (x = {0,1}) and is false when x is {} . The decidability for the first-order theory of many classes of Boolean algebras can still be shown, using quantifier elimination or small model property (with the ...
Boolean algebra can refer to: A calculus for the manipulation of truth values (T and F). A complemented distributive lattice. These can be used to model the operations on truth values. Boolean algebra is intimately related to propositional logic (sentential logic) as well.