Search results
Results From The WOW.Com Content Network
The amount of coherence can readily be measured by the interference visibility, which looks at the size of the interference fringes relative to the input waves (as the phase offset is varied); a precise mathematical definition of the degree of coherence is given by means of correlation functions. More broadly, coherence describes the ...
The coherence (sometimes called magnitude-squared coherence) between two signals x(t) and y(t) is a real-valued function that is defined as: [1] [2] = | | ()where G xy (f) is the Cross-spectral density between x and y, and G xx (f) and G yy (f) the auto spectral density of x and y respectively.
The second order coherence for thermal, stellar and coherent light as a function of time delay. τ 0 {\displaystyle \tau _{0}} is the coherence length of the light beam. Similar to the case of Young's double slit experiment, the classical and the quantum description lead to the same result, but that does not mean that two descriptions are ...
However, for measurements correlating detections at multiple detectors, higher-order coherence is involved (e.g., intensity correlations, second order coherence, at two detectors). Glauber's definition of quantum coherence involves nth-order correlation functions (n-th order coherence) for all n. The perfect coherent state has all n-orders of ...
A theoretical definition of the coherence is given by the degree of coherence, using the notion of correlation. Generally, two or more waves are superimposed and as the phase difference between them varies, the power or intensity (probability or population in quantum mechanics ) of the resulting wave oscillates, forming an interference pattern.
In physics, coherence length is the propagation distance over which a coherent wave (e.g. an electromagnetic wave) maintains a specified degree of coherence. Wave interference is strong when the paths taken by all of the interfering waves differ by less than the coherence length. A wave with a longer coherence length is closer to a perfect ...
In classical scattering of a target body by environmental photons, the motion of the target body will not be changed by the scattered photons on the average. In quantum scattering, the interaction between the scattered photons and the superposed target body will cause them to be entangled, thereby delocalizing the phase coherence from the target body to the whole system, rendering the ...
Coherence (physics), an ideal property of waves that enables stationary (i.e. temporally and spatially constant) interference Coherence (units of measurement), a derived unit that, for a given system of quantities and for a chosen set of base units, is a product of powers of base units with no other proportionality factor than one