Search results
Results From The WOW.Com Content Network
Discovered that electric attraction and repulsion can act across a vacuum and does not depend upon the air as a medium. He also added resin to the then-known list of "electrics". 1678: Christiaan Huygens: Stated his theory to the French Academy of Sciences that light is a wave-like phenomenon. 1687: Sir Isaac Newton
[31] [32] They demonstrated that spectroscopy could be used for trace chemical analysis and several of the chemical elements they discovered were previously unknown. Kirchhoff and Bunsen also definitively established the link between absorption and emission lines, including attributing solar absorption lines to particular elements based on ...
This is a timeline of subatomic particle discoveries, including all particles thus far discovered which appear to be elementary (that is, indivisible) given the best available evidence. It also includes the discovery of composite particles and antiparticles that were of particular historical importance. More specifically, the inclusion criteria ...
The two discovering parties independently assign the discovered meson two different symbols, J and ψ; thus, it becomes formally known as the J/ψ meson. The discovery finally convinces the physics community of the quark model's validity. 1974 Robert J. Buenker and Sigrid D. Peyerimhoff introduce the multireference configuration interaction method.
A photon (from Ancient Greek φῶς, φωτός (phôs, phōtós) 'light') is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force.
In the late 17th century, Sir Isaac Newton had advocated that light was corpuscular (particulate), but Christiaan Huygens took an opposing wave description. While Newton had favored a particle approach, he was the first to attempt to reconcile both wave and particle theories of light, and the only one in his time to consider both, thereby anticipating modern wave-particle duality.
A diagram of the electromagnetic spectrum, showing various properties across the range of frequencies and wavelengths. The electromagnetic spectrum is the full range of electromagnetic radiation, organized by frequency or wavelength. The spectrum is divided into separate bands, with different names for the electromagnetic waves within each band.
An example of spectroscopy: a prism analyses white light by dispersing it into its component colors. Spectroscopy is the field of study that measures and interprets electromagnetic spectra. [1] [2] In narrower contexts, spectroscopy is the precise study of color as generalized from visible light to all bands of the electromagnetic spectrum.