Search results
Results From The WOW.Com Content Network
Tubulin dimers can bind two molecules of GTP, one of which can be hydrolyzed subsequent to assembly. During polymerization, the tubulin dimers are in the GTP-bound state. [12] The GTP bound to α-tubulin is stable and it plays a structural function in this bound state. However, the GTP bound to β-tubulin may be hydrolyzed to GDP shortly after ...
The β-tubulin subunit is exposed on the plus end of the microtubule, while the α-tubulin subunit is exposed on the minus end. After the dimer is incorporated into the microtubule, the molecule of GTP bound to the β-tubulin subunit eventually hydrolyzes into GDP through inter-dimer contacts along the microtubule protofilament. [17]
Guanosine-5'-triphosphate (GTP) is a purine nucleoside triphosphate. It is one of the building blocks needed for the synthesis of RNA during the transcription process. Its structure is similar to that of the guanosine nucleoside , the only difference being that nucleotides like GTP have phosphates on their ribose sugar.
L-form bacteria that lack a cell wall do not require FtsZ for division, which implies that bacteria may have retained components of an ancestral mode of cell division. [ 16 ] Much is known about the dynamic polymerization activities of tubulin and microtubules , but little is known about these activities in FtsZ.
In cell biology, microtubule nucleation is the event that initiates de novo formation of microtubules (MTs). These filaments of the cytoskeleton typically form through polymerization of α- and β-tubulin dimers, the basic building blocks of the microtubule, which initially interact to nucleate a seed from which the filament elongates. [1]
Based on this GTP-cap model, catastrophe happens randomly. The model proposes that an increase in microtubule growth will correlate with a decrease in random catastrophe frequency or vice versa. The discovery of microtubule-associated proteins that change the rate of catastrophe while not impacting the rate of microtubule growth challenges this ...
Tubulin GTPase (EC 3.6.5.6) is an enzyme with systematic name GTP phosphohydrolase (microtubule-releasing). [1] [2] [3] This enzyme catalyses the following chemical reaction. GTP + H 2 O GDP + phosphate. This enzyme participates in tubulin folding and division plane formation.
This binding can occur with either polymerized or depolymerized tubulin, and in most cases leads to the stabilization of microtubule structure, further encouraging polymerization. Usually, it is the C-terminal domain of the MAP that interacts with tubulin, while the N-terminal domain can bind with cellular vesicles, intermediate filaments or ...