When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  3. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  4. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    In SI, this slope or derivative is expressed in the units of meters per second per second (/, usually termed "meters per second-squared"). Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the ...

  5. Velocity - Wikipedia

    en.wikipedia.org/wiki/Velocity

    From this derivative equation, in the one-dimensional case it can be seen that the area under a velocity vs. time (v vs. t graph) is the displacement, s. In calculus terms, the integral of the velocity function v(t) is the displacement function s(t). In the figure, this corresponds to the yellow area under the curve.

  6. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    These equations can be used only when acceleration is constant. If acceleration is not constant then the general calculus equations above must be used, found by integrating the definitions of position, velocity and acceleration (see above).

  7. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    velocity is the derivative (with respect to time) of an object's displacement (distance from the original position) acceleration is the derivative (with respect to time) of an object's velocity, that is, the second derivative (with respect to time) of an object's position. For example, if an object's position on a line is given by

  8. Archimedean spiral - Wikipedia

    en.wikipedia.org/wiki/Archimedean_spiral

    If the xy plane rotates with a constant angular velocity ω about the z-axis, then the velocity of the point with respect to z-axis may be written as: The xy plane rotates to an angle ωt (anticlockwise) about the origin in time t. (c, 0) is the position of the object at t = 0. P is the position of the object at time t, at a distance of R = vt + c.

  9. Relative velocity - Wikipedia

    en.wikipedia.org/wiki/Relative_velocity

    This, by definition, is 50 km/h, which suggests that the prescription for calculating relative velocity in this fashion is to add the two velocities. The diagram displays clocks and rulers to remind the reader that while the logic behind this calculation seem flawless, it makes false assumptions about how clocks and rulers behave.