When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Elliptic integral - Wikipedia

    en.wikipedia.org/wiki/Elliptic_integral

    In integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied by Giulio Fagnano and Leonhard Euler (c. 1750). Their name originates from their originally arising in connection with the problem of finding the arc length of an ellipse .

  3. Elliptic function - Wikipedia

    en.wikipedia.org/wiki/Elliptic_function

    The relation to elliptic integrals has mainly a historical background. Elliptic integrals had been studied by Legendre, whose work was taken on by Niels Henrik Abel and Carl Gustav Jacobi. Abel discovered elliptic functions by taking the inverse function of the elliptic integral function

  4. Legendre form - Wikipedia

    en.wikipedia.org/wiki/Legendre_form

    The incomplete elliptic integral of the first kind is defined as, (,) = ⁡ (),the second kind as (,) = ⁡ (),and the third kind as (,,) = (⁡ ()) ⁡ ().The argument n of the third kind of integral is known as the characteristic, which in different notational conventions can appear as either the first, second or third argument of Π and furthermore is sometimes defined with the opposite sign.

  5. Carlson symmetric form - Wikipedia

    en.wikipedia.org/wiki/Carlson_symmetric_form

    In general, the arguments x, y, z of Carlson's integrals may not be real and negative, as this would place a branch point on the path of integration, making the integral ambiguous. However, if the second argument of R C {\displaystyle R_{C}} , or the fourth argument, p, of R J {\displaystyle R_{J}} is negative, then this results in a simple ...

  6. List of formulae involving π - Wikipedia

    en.wikipedia.org/wiki/List_of_formulae_involving_π

    More formulas of this nature can be given, as explained by Ramanujan's theory of elliptic functions to alternative bases. Perhaps the most notable hypergeometric inversions are the following two examples, involving the Ramanujan tau function τ {\displaystyle \tau } and the Fourier coefficients j {\displaystyle \mathrm {j} } of the J-invariant ...

  7. Legendre's relation - Wikipedia

    en.wikipedia.org/wiki/Legendre's_relation

    where K and K′ are the complete elliptic integrals of the first kind for values satisfying k 2 + k′ 2 = 1, and E and E′ are the complete elliptic integrals of the second kind. This form of Legendre's relation expresses the fact that the Wronskian of the complete elliptic integrals (considered as solutions of a differential equation) is a ...

  8. Perimeter of an ellipse - Wikipedia

    en.wikipedia.org/wiki/Perimeter_of_an_ellipse

    An ellipse has two axes and two foci Unlike most other elementary shapes, such as the circle and square , there is no algebraic equation to determine the perimeter of an ellipse . Throughout history, a large number of equations for approximations and estimates have been made for the perimeter of an ellipse.

  9. Landen's transformation - Wikipedia

    en.wikipedia.org/wiki/Landen's_transformation

    Landen's transformation is a mapping of the parameters of an elliptic integral, useful for the efficient numerical evaluation of elliptic functions. It was originally due to John Landen and independently rediscovered by Carl Friedrich Gauss .