Ad
related to: class 11 sets ex 1.1 exercise 3 9 problems physics
Search results
Results From The WOW.Com Content Network
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion.
As an example, "is less than" is a relation on the set of natural numbers; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3), and likewise between 3 and 4 (denoted as 3 < 4), but not between the values 3 and 1 nor between 4 and 4, that is, 3 < 1 and 4 < 4 both evaluate to false.
If M is a set or class whose elements are sets, then x is an element of the union of M if and only if there is at least one element A of M such that x is an element of A. [11] In symbols: x ∈ ⋃ M ∃ A ∈ M , x ∈ A . {\displaystyle x\in \bigcup \mathbf {M} \iff \exists A\in \mathbf {M} ,\ x\in A.}
Elements covered by (3, 3) and covering (3, 3) are highlighted in green and red, respectively. In order of increasing strength, i.e., decreasing sets of pairs, three of the possible partial orders on the Cartesian product of two partially ordered sets are (see Fig. 4):
Just as arithmetic features binary operations on numbers, set theory features binary operations on sets. [9] The following is a partial list of them: Union of the sets A and B, denoted A ∪ B, is the set of all objects that are a member of A, or B, or both. [10] For example, the union of {1, 2, 3} and {2, 3, 4} is the set {1, 2, 3, 4}.
Then an ordinal number is, by definition, a class consisting of all well-ordered sets of the same order type. To have the same order type is an equivalence relation on the class of well-ordered sets, and the ordinal numbers are the equivalence classes. Two sets of the same order type have the same cardinality.
Flowchart of using successive subtractions to find the greatest common divisor of number r and s. In mathematics and computer science, an algorithm (/ ˈ æ l ɡ ə r ɪ ð əm / ⓘ) is a finite sequence of mathematically rigorous instructions, typically used to solve a class of specific problems or to perform a computation. [1]
Russell's paradox concerns the impossibility of a set of sets, whose members are all sets that do not contain themselves. If such a set could exist, it could neither contain itself (because its members all do not contain themselves) nor avoid containing itself (because if it did, it should be included as one of its members). [2]