Ads
related to: np hard and complete difference- Chamberlain Financial Aid
Develop a Financial Plan With
Available Opportunities
- About Chamberlain
130 Years of Extraordinary Care
Committed to Academic Excellence
- Financial Aid Programs
Receive Financial Assistance
Through Chamberlain Payment Plans.
- Welcome To Chamberlain
Application for Admission
Apply in Just 5-10 Minutes.
- Chamberlain Financial Aid
lp.southuniversity.edu has been visited by 10K+ users in the past month
go.herzing.edu has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
A decision problem H is NP-hard when for every problem L in NP, there is a polynomial-time many-one reduction from L to H. [1]: 80 Another definition is to require that there be a polynomial-time reduction from an NP-complete problem G to H.
A problem is NP-complete if it is both in NP and NP-hard. The NP-complete problems represent the hardest problems in NP. If some NP-complete problem has a polynomial time algorithm, all problems in NP do. The set of NP-complete problems is often denoted by NP-C or NPC.
Informally, an NP-complete problem is an NP problem that is at least as "tough" as any other problem in NP. NP-hard problems are those at least as hard as NP problems; i.e., all NP problems can be reduced (in polynomial time) to them. NP-hard problems need not be in NP; i.e., they need not have solutions verifiable in polynomial time.
Euler diagram for P, NP, NP-complete, and NP-hard set of problems. Under the assumption that P ≠ NP, the existence of problems within NP but outside both P and NP-complete was established by Ladner. [1] In computational complexity theory, NP (nondeterministic polynomial time) is a complexity class used to classify decision problems.
Therefore, the longest path problem is NP-hard. The question "does there exist a simple path in a given graph with at least k edges" is NP-complete. [2] In weighted complete graphs with non-negative edge weights, the weighted longest path problem is the same as the Travelling salesman path problem, because the longest path always includes all ...
In computational complexity, an NP-complete (or NP-hard) problem is weakly NP-complete (or weakly NP-hard) if there is an algorithm for the problem whose running time is polynomial in the dimension of the problem and the magnitudes of the data involved (provided these are given as integers), rather than the base-two logarithms of their magnitudes.