Search results
Results From The WOW.Com Content Network
Beginning in 1908, luminous paint containing a mixture of radium and copper-doped zinc sulfide was used to paint watch faces and instrument dials, giving a greenish glow. Phosphors containing copper-doped zinc sulfide (ZnS:Cu) yield blue-green light; copper and manganese-doped zinc sulfide (ZnS:Cu,Mn), yielding yellow-orange light are also used ...
Zinc sulfide (or zinc sulphide) is an inorganic compound with the chemical formula of ZnS. This is the main form of zinc found in nature, where it mainly occurs as the mineral sphalerite . Although this mineral is usually black because of various impurities, the pure material is white, and it is widely used as a pigment.
Although old radium dials generally no longer produce light, this is due to the breakdown of the crystal structure of the luminous zinc sulfide rather than the radioactive decay of the radium. The radium isotope ( 226 Ra ) used has a half-life of about 1,600 years, [ 7 ] so radium dials remain essentially just as radioactive as when originally ...
Radium paint used zinc sulfide phosphor, usually trace metal doped with an activator, such as copper (for green light), silver (blue-green), and more rarely copper-magnesium (for yellow-orange light). The phosphor degrades relatively fast and the dials lose luminosity in several years to a few decades; clocks and other devices available from ...
Undark was a trade name for luminous paint made with a mixture of radioactive radium and zinc sulfide, as produced by the U.S. Radium Corporation between 1917 and 1938. It was used primarily in radium dials for watches and clocks.
The company's luminescent paint, marketed as Undark, was a mixture of radium and zinc sulfide; the radiation causing the sulfide to fluoresce. During World War I, demand for dials, watches, and aircraft instruments painted with Undark surged, and the company expanded operations considerably.
Radium is a chemical element; it has symbol Ra and atomic number 88. It is the sixth element in group 2 of the periodic table, also known as the alkaline earth metals. Pure radium is silvery-white, but it readily reacts with nitrogen (rather than oxygen) upon exposure to air, forming a black surface layer of radium nitride (Ra 3 N 2).
Various preparations of the phosphor compound can be used to produce different colors of light. For example, doping zinc sulfide phosphor with different metals can change the emission wavelength. [4] Some of the colors that have been manufactured in addition to the common phosphors are green, red, blue, yellow, purple, orange, and white.