Search results
Results From The WOW.Com Content Network
Like most toxic gases, the dose inhaled determines the toxicity on the respiratory tract. Occupational exposures constitute the highest risk of toxicity and domestic exposure is uncommon. Prolonged exposure to low concentration of the gas may have lethal effects, as can short-term exposure to high concentrations like chlorine gas poisoning .
Until the 1980s, nitric oxide, a product of fossil fuel combustion, was thought only to play a role the detrimental effects of air pollution on the respiratory tract. [17] In 1987, experiments with coronary arteries showed that nitric oxide was the long sought endothelium-derived relaxing factor.
Nitric oxide is a cell signaling molecule produced by many cells of the body, and growing evidence suggests that the biological actions of the endocannabinoid system (ECS) may, in part, be mediated through its ability to regulate the production and/or release of nitric oxide. [82]
Inhalation of high doses of this gas causes lesions in the larynx, trachea, and large bronchi with inflammatory reactions and necrosis. The alkylating agent affects more the upper parts of the respiratory tract, and only intensely exposed victims showed signs like bronchiolitis obliterans in the distal part.
Anaerobic cellular respiration and fermentation generate ATP in very different ways, and the terms should not be treated as synonyms. Cellular respiration (both aerobic and anaerobic) uses highly reduced chemical compounds such as NADH and FADH 2 (for example produced during glycolysis and the citric acid cycle) to establish an electrochemical gradient (often a proton gradient) across a membrane.
For skin or eye exposure, the affected area is flushed with saline. For inhalation, oxygen is administered, bronchodilators may be administered, and if there are signs of methemoglobinemia, a condition that arises when nitrogen-based compounds affect the hemoglobin in red blood cells, methylene blue may be administered. [35] [36]
Particles can cause health effects through several mechanisms: inflammation in the respiratory tract [158] oxidative stress via reactive oxygen species, leading to cellular damage, [162] and systemic effects, such as translocation of ultrafine particles into circulation affects organs beyond the lungs.
By contrast, the second three tree species, oak, beech and hickory, are associated with microbes that "absorb reactive nitrogen oxides," and thus can have a positive impact on the nitrogen oxide component of air quality. Nitrogen oxide release from forest soils is expected to be highest in Indiana, Illinois, Michigan, Kentucky and Ohio. [19]