Search results
Results From The WOW.Com Content Network
In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of ...
An n × n matrix commutes with every other n × n matrix if and only if it is a scalar matrix, that is, a matrix of the form , where is the n × n identity matrix and is a scalar. In other words, the center of the group of n × n matrices under multiplication is the subgroup of scalar matrices.
The trace, tr(A) of a square matrix A is the sum of its diagonal entries. While matrix multiplication is not commutative as mentioned above, the trace of the product of two matrices is independent of the order of the factors: = ().
Signature matrix: A diagonal matrix where the diagonal elements are either +1 or −1. Single-entry matrix: A matrix where a single element is one and the rest of the elements are zero. Skew-Hermitian matrix: A square matrix which is equal to the negative of its conjugate transpose, A * = −A. Skew-symmetric matrix
This is because any function of a non-defective matrix acts directly on each of its eigenvalues, and the conjugate transpose of its spectral decomposition is , where is the diagonal matrix of eigenvalues. Likewise, if two normal matrices commute and are therefore simultaneously diagonalizable, any operation between these matrices also acts on ...
For matrix-matrix exponentials, there is a distinction between the left exponential Y X and the right exponential X Y, because the multiplication operator for matrix-to-matrix is not commutative. Moreover, If X is normal and non-singular, then X Y and Y X have the same set of eigenvalues. If X is normal and non-singular, Y is normal, and XY ...
For matrices over non-commutative rings, multilinearity and alternating properties are incompatible for n ≥ 2, [48] so there is no good definition of the determinant in this setting. For square matrices with entries in a non-commutative ring, there are various difficulties in defining determinants analogously to that for commutative rings.
Since the degree matrix D is diagonal, its reciprocal square root (+) / is just the diagonal matrix whose diagonal entries are the reciprocals of the square roots of the diagonal entries of D. If all the edge weights are nonnegative then all the degree values are automatically also nonnegative and so every degree value has a unique positive ...