Ad
related to: flowchart and algorithm example problems free printable
Search results
Results From The WOW.Com Content Network
A simple flowchart representing a process for dealing with a non-functioning lamp.. A flowchart is a type of diagram that represents a workflow or process.A flowchart can also be defined as a diagrammatic representation of an algorithm, a step-by-step approach to solving a task.
Flowchart of using successive subtractions to find the greatest common divisor of number r and s. In mathematics and computer science, an algorithm (/ ˈ æ l ɡ ə r ɪ ð əm / ⓘ) is a finite sequence of mathematically rigorous instructions, typically used to solve a class of specific problems or to perform a computation. [1]
An example of such a diagram is the illustration of the flows in a nuclear submarine propulsion system, which shows different streams back and forth in the system. The representation of such a system can be supplemented by one or more flowcharts, which show the sequence of one of the flows in one direction, or any of the control flows to manage ...
Graph traversal is a technique for finding solutions to problems that can be represented as graphs. This approach is broad, and includes depth-first search , breadth-first search , tree traversal , and many specific variations that may include local optimizations and excluding search spaces that can be determined to be non-optimum or not possible.
Flowgorithm is a graphical authoring tool which allows users to write and execute programs using flowcharts. The approach is designed to emphasize the algorithm rather than the syntax of a specific programming language. [1] The flowchart can be converted to several major programming languages. Flowgorithm was created at Sacramento State ...
An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.
Nassi–Shneiderman diagrams are only rarely used for formal programming. Their abstraction level is close to structured program code and modifications require the whole diagram to be redrawn, but graphic editors removed that limitation. They clarify algorithms and high-level designs, which make them useful in teaching.
Unlike the latter however, optimisation algorithms do not necessarily require problems to be logic-solvable, giving them the potential to solve a wider range of problems. Algorithms designed for graph colouring are also known to perform well with Sudokus. [13] It is also possible to express a Sudoku as an integer linear programming problem ...